Journal of Industrial and Engineering Chemistry, Vol.91, 340-346, November, 2020
Improvement of the rheological properties of rosemary oil nanoemulsions prepared by microfluidization and vacuum evaporation
E-mail:
Commercial products with specific textures and rheological properties can be made by controlling the processing variables by evaporation. In this research, we investigate the effect of evaporation time on rheological properties, DSD, microstructure and physical stability of biodegradable emulsions formulated with rosemary oil and Appyclean 6548, an alkyl polypentoside surfactant derived from wheat straw. Results showed that the rheological properties of emulsions depend greatly on time of evaporation and aging time. This method makes it possible to improve the viscosity and viscoelasticity compared with emulsions without evaporation. The main destabilization process was flocculation. Emulsions undergoing higher evaporation time also exhibited coalescence. In conclusion, rosemary nanoemulsions obtained by vacuum evaporation showed high stability and great resistance against creaming, making these appropriate for use in functional foods or cosmetic products.
- Acosta E, Curr. Opin. Colloid Interface Sci., 14, 3 (2009)
- Villalobos-Castillejos F, et al., Nanoemulsions: Formulation, Applications, and Characterization, Academic Press, London, United Kingdom, pp.207 2018.
- Gutierrez G, Lobo A, Benito JM, Coca J, Pazos C, J. Hazard. Mater., 185(2-3), 1569 (2011)
- Matos M, Gutierrez G, Iglesias O, Coca J, Pazos C, Food Hydrocolloids, 49, 156 (2015)
- Gutierrez G, Matos M, Benito JM, Coca J, Pazos C, Colloids Surf. A: Physicochem. Eng. Asp., 442, 111 (2014)
- Gutierrez G, Benito JM, Coca J, Pazos C, Chem. Eng. J., 162(1), 201 (2010)
- Matos M, Laca A, Rea F, Iglesias O, Rayner M, Gutierrez G, J. Food Eng., 222, 207 (2018)
- Chen QH, Liu TX, Tang CH, Ind. Crop. Prod., 141, 111733 (2019)
- Dorman HJD, Peltoketo A, Hiltunen R, Tikkanen MJ, Food Chem., 83(2), 255 (2003)
- Abdullah BH, Hatem SF, Jumaa W, UK J. Pharm. Biosci., 3(1), 18 (2015)
- Mathlouthi N, Bouzaienne T, Oueslati I, Recoquillay F, Hamdi M, Urdaci M, Bergaoui R, J. Anim. Sci., 90(3), 813 (2012)
- Mezza GN, Borgarello AV, Grosso NR, Fernandez H, Pramparo MC, Gayol MF, Food Chem., 242, 9 (2018)
- Borges RS, Lima ES, Keita H, Ferreira IM, Fernandes CP, Cruz RAS, et al., nflammopharmacology, 26(1), 183 (2018)
- Villareal MO, Ikeya A, Sasaki K, Ben Arfa A, Neffati M, Isoda H, BMC Complement. Altern. Med., 17(1), 549 (2017)
- Martin-Pinero MJ, Ramirez P, Munoz J, Alfaro MC, Colloids Surf. B: Biointerfaces, 173, 486 (2019)
- Martin MJ, Trujillo LA, Garcia MC, Alfaro MC, Munoz J, J. Dispersion Sci. Technol., 39(11), 1627 (2018)
- Goudoulas TB, Germann N, Food Hydrocoll., 66, 49 (2017)
- Laupheimer M, Jovic K, Antunes FE, Da Graca Martins Miguel M, Stubenrauch C, Soft Matter, 3661 (2013).
- Pang Z, Deeth H, Sopade P, Sharma R, Bansal N, Food Hydrocolloids, 35, 484 (2014)
- Xu JL, Zhang JC, Liu Y, Sun HJ, Wang JH, Carbohydr. Polym., 139, 43 (2016)
- Rao MA, Rheology of Fluid and Semisolid Foods Principles and Applications, second ed., Springer Science & Business Media, New York, USA, 2014.
- McClements DJ, Crit. Rev. Food Sci. Nutr., 47(7), 611 (2007)
- Santos J, Alfaro MC, Trujillo-Cayado LA, Calero N, Munoz J, LWT, 100, 189 (2019)
- Mengual O, Meunier G, Cayre I, Puech K, Snabre P, Talanta, Vol. 50, Elsevier, pp.445 1999.
- Palazolo GG, Sorgentini DA, Wagner JR, Food Hydrocolloids, 19(3), 595 (2005)
- Tadros RF, Tadros TF, (Eds.), Emulsion Science and Technology, Wiley-VCH Verlag GmbH and Co., KGaA, Weinheim, pp.1 2009.
- Martin-Pinero MJ, Garcia MC, Santos J, Alfaro-Rodriguez M, Munoz J, J. Sci. Food Agri., 100(10), 3886 (2020)
- Santos J, Calero N, Munoz J, Chem. Eng. Res. Des., 100, 261 (2015)
- Manoj P, Watson AD, Hibberd DJ, Fillery-Travis AJ, Robins MM, J. Colloid Interface Sci., 207(2), 294 (1998)
- McClements DJ, Colloids Surf. A: Physicochem. Eng. Asp., 90(1), 25 (1994)
- Quemada D, Eur. Phys. J. Appl. Phys., 1(1), 119 (1998)