화학공학소재연구정보센터
Clean Technology, Vol.26, No.4, 263-269, December, 2020
정수슬러지를 이용한 제올라이트의 합성 및 특성연구
Synthesis and Characterization of Zeolite Using Water Treatment Sludge
E-mail:
초록
정수슬러지를 이용하여 제올라이트(zeolite)를 수열합성하고, 제올라이트의 결정화에 대한 반응온도, 반응시간, Na2O/SiO2 몰비의 영향을 살펴보았다. 제조한 제올라이트의 결정구조, 물성 및 열적 특성은 각각 X-선 회절분석, FTIR, BET 질소흡착 및 TGA로 분석하였다. 제올라이트의 흡착성능을 조사하기 위해 암모니아성 질소, 중금속이온 및 TOC 제거효율을 측정하였다. 정수슬러지의 주성분은 Al2O3와 SiO2로서 각각 28.79%와 27.06%을 나타내었으며, 제올라이트 합성을 위한 실리카 및 알루미나 원료는 정수슬러지 이외에 어떠한 화학원료도 추가로 첨가하지 않고 합성을 진행하였다. 정수슬러지를 이용하여 제조한 제올라이트는 A형 제올라이트의 구조를 나타내었으며, 반응기질의 조성을 2.1Na2O-Al2O3-1.6SiO2-65H2O으로 하고, 반응온도 90 ℃, 반응시간 5시간, Na2O/SiO2 몰비가 1.3인 경우에 가장 높은 결정성을 나타내었다. 합성 제올라이트의 비표면적은 55 m2 g-1로서 상업용 제올라이트 A 보다 높게 나타났다. 합성 제올라이트의 암모니아성 질소(NH4+) 제거율은 3시간 반응한 경우 68%를 나타내었으며, 제올라이트의 Pb2+ 및 Cd2+ 이온에 대한 흡착실험 결과 제거율은 각각 99.1% 및 99.3%를 나타내었다. 이는 제올라이트의 격자 내에 존재하는 Na+ 이온과 Pb2+ 및 Cd2+ 이온 간의 원활한 이온교환이 이루어졌음을 나타낸다. 300 ppm 부식산 용액에 제올라이트의 첨가량을 변화시켜 3시간 동안 흡착실험을 수행한 결과 제올라이트 5 g을 첨가한 경우 TOC 제거율이 83%로서 가장 높게 나타났다.
Zeolite was synthesized hydrothermally using the water-treatment sludge, and the effects of various synthesis parameters like reaction temperature, reaction time, and Na2O/SiO2 molar ratio on the crystallization of zeolite were investigated. Crystal structure, physical property, and thermal stability of zeolite crystals were characterized by X-ray powder diffraction, FTIR spectroscopy, BET nitrogen adsorption, and TGA measurements. The removal efficiencies of nitrogen in ammonia, heavy metal ions, and TOC were calculated to evaluate zeolite’s adsorption capacity. The primary chemical composition of water-treatment sludge was 28.79% Al2O3 and 27.06% SiO2. The zeolites were synthesized by merely employing the water-treatment sludge as silica and alumina sources without additional chemicals. Zeolite crystals synthesized through the water-treatment sludge were confirmed as an A-type zeolite structure. Zeolite A had the highest crystallinity obtained from a gel with the molar composition 2.1Na2O-Al2O3-1.6SiO2-65H2O after 5 h at a temperature of 90 ℃. The specific surface area of zeolite obtained was 55 m2 g-1, which was higher than commercial zeolite A. The removal efficiency of nitrogen in ammonia was 68% after 3 h of reaction time, while the removal efficiencies of Pb2+ and Cd2+ ions were 99.1% and 99.3%, respectively. These results indicate active ion exchange between Pb2+ or Cd2+ ion and Na+ ion in the zeolite framework. The adsorption experiments on the different zeolite addition conditions were performed for 3 h with 300 ppm humic acid. Based on the results, TOC’s highest efficiency was 83% when 5 g of zeolite was added.
  1. Kang KC, Kim YH, Kim J, Lee CH, Rhee SW, Appl. Chem. Eng., 22(2), 173 (2011)
  2. Kim JM, Kim MK, Lee JM, Lee CH, Lee SW, Choi DJ, La JM, Korea Patent, 10-1041094 (2011).
  3. Yun DH, Lee BH, Kim YT, J. Korean Geo-environ. Soc., 13(8), 75 (2012)
  4. Lee CH, Park N, Kim PG, Jeon JK, Appl. Chem. Eng., 27(1), 62 (2016)
  5. Kim IH, PhD Dissertation, Chonbuk National University, Chonbuk, Korea (2007).
  6. Kang KC, Kim YH, Kim J, Lee CH, Rhee SW, Appl. Chem. Eng., 22(2), 173 (2011)
  7. Park N, Bae J, Lee CH, Jeon JK, Clean Technol., 19(2), 121 (2013)
  8. Bae J, Park N, Lee CH, Park YK, Jeon JK, Korean Chem. Eng. Res., 51(3), 352 (2013)
  9. Bae J, Park N, Kim G, Lee CH, Park YK, Jeon JK, Korean. J. Chem. Eng., 31(4), 624 (2014)
  10. Park YS, Lee JY, Sohn MJ, J. Korea Soc. Waste Manag., 36(5), 421 (2019)
  11. Ko YS, Ahn HS, Microporous Mesoporous Mater., 30(2-3), 283 (1999)
  12. Ko YS, Ahn HS, Microporous Materials, 9(3-4), 131 (1997)
  13. Ko YS, Ahn HS, Powder Technology, 145, 10 (2004)
  14. Ko YS, Ahn WS, Korean J. Chem. Eng., 25(6), 1546 (2008)
  15. Ko YS, Ahn HS, Bull. Korean Chem. Soc., 20(2), 173 (1999)
  16. Ko YS, Jang HT, Ahn HS, J. Ind. Eng. Chem., 13(5), 704 (2007)
  17. Chung KH, Park BG, J. Ind. Eng. Chem., 15(3), 388 (2009)
  18. Shahed GV, Taherian Z, Khataee A, Keshkani F, Orooji Y, J. Ind. Eng. Chem., 86, 73 (2020)
  19. Ko YS, Ahn WS, Korean J. Chem. Eng., 15(2), 182 (1998)
  20. Ko YS, Ahn WS, Korean J. Chem. Eng., 15(4), 423 (1998)
  21. Talebian-Kiakalaieh A, Tarighi S, J. Ind. Eng. Chem., 88, 167 (2020)
  22. Kim G, Park N, Bae J, Jeon JK, Lee CH, Appl. Chem. Eng., 25(2), 167 (2014)
  23. Ghim YS, J. Ind. Eng. Chem., 3(2), 201 (1992)
  24. Lee K, Han S, Cho C, Lee H, HWAHAK KONGHAK, 29(3), 245 (1991)