화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.30, No.12, 701-708, December, 2020
밀집된 금속 나노 입자 레이어의 광학 특성
Enhanced Light Transmittance of Densely Packed Metal Nanoparticle Layers
E-mail:
Irradiation of the metal nanoparticles causes local plasmon resonance in a specific wavelength band, which can improve the absorption and scattering properties of a structure. Since noble metal nanoparticles have better resonance effects than those of other metals, it is easy to identify plasmonic reactions and this is advantageous to find the optical tendency. Compared to having a particle gap or randomly arranged particle structures, densely and evenly packed structures can exhibit more uniform optical properties. Using the uniform properties, the structure can be applied to optical filtering applications. Therefore, in this paper, validation tests about metal nanoparticles and thin film structures are conducted for more accurate analysis. The optical properties of monolayer and bilayer noble metal nanoparticle structures with different diameters, packed in a uniform array, are investigated and their optical trends are analyzed. In addition, a thin film structure under identical conditions as metal nanoparticle structure is evaluated to confirm the improved optical characteristics.
  1. Fahlman BD, Materials Chemistry, p. 275-356, Springer, Dordrecht (2007).
  2. Ju-Nam Y, Lead J, Sci. Total Environ., 400, 396 (2008)
  3. Wang DS, Li YD, Adv. Mater., 23(9), 1044 (2011)
  4. Wang C, Yin H, Chan R, Peng S, Dai S, Sun S, Chem. Mater., 21, 433 (2009)
  5. Lee HJ, Habas SE, Somorjai GA, Yang PD, J. Am. Chem. Soc., 130(16), 5406 (2008)
  6. Huang X, Li Y, Zhou H, Duan X, Huang Y, Nano Lett., 12, 4265 (2012)
  7. Maier S, Plasmonics: Fundamentals and Applications, p.65, Springer, New York (2007).
  8. Lal S, Link S, Halas NJ, Nat. Photonics, 1, 641 (2007)
  9. Wang X, Yu JC, Yip HY, Wu L, Wong PK, Lai SY, Chem. Eur. J., 11, 2997 (2005)
  10. Cao XB, Gu L, Zhuge L, Gao WJ, Wang WC, Wu SF, Adv. Funct. Mater., 16(7), 896 (2006)
  11. Virkutyte J, Varma RS, New J. Chem., 34, 1094 (2010)
  12. Oh Y, Lee W, Kim D, Opt. Lett., 36, 1353 (2011)
  13. Yanase Y, Hiragun T, Ishii K, Kawaguchi T, Yanase T, Kawai M, Sakamoto K, Hide M, Sensors, 14, 4948 (2014)
  14. Wu SH, Lee KL, Weng RH, Zheng ZX, Chou A, Wei PK, PLos One, 9, e89522 (2014)
  15. Pham AD, Ahn HJ, nt. J. Precis. Eng. Manuf.-Green Tech., 5, 519 (2018)
  16. Ahamed M, Siddiqui MKJ, Clin. Chim. Acta., 411, 1841 (2010)
  17. Derkacs D, Lim SH, Matheu P, Mar W, Yu ET, Appl. Phys. Lett., 89, 093103 (2006)
  18. Naik GV, Shalaev VM, Boltasseva A, Adv. Mater., 25(24), 3264 (2013)
  19. Xia Y, Wu X, Zhao J, Zhao J, Li Z, Ren W, Tian Y, Li Z, Shen Z, Wu A, Nanoscale, 8, 18682 (2016)
  20. Baek S, Noh J, Lee CH, Kim BS, Seo MK, Lee JY, Sci. Rep., 3, 1726 (2013)
  21. Li R, Li BQ, Wang W, AIP Advances, 9, 085119 (2019)
  22. Choi KW, Kim DY, Ye SJ, Park OO, Adv. Mater. Res., 3, 199 (2014)
  23. Park GC, Song YM, Ha JH, Lee YT, J. Nanosci. Nanotechnol., 11, 6152 (2011)
  24. Shipway AN, Katz E, Willner I, ChemphysChem, 1, 18 (2000)
  25. Bi K, Chen Y, Wan Q, Ye T, Xiang Q, Zheng M, et al., Nanoscale, 11, 1245 (2019)
  26. Sullivan DM, Electromagnetic Simulation Using The FDTD Method, 2nd ed., p. 79, John Wiley & Sons, Wiley-IEEE Press, New Jersey (2000).
  27. Allen T, Hagness SC, Computational Electromagnetics: The Finite-Difference Time-Domain Method, 3rd ed., p. 1151, MA: Artech House, Boston (2005).
  28. Gedney SD, p.39-74, Morgan & Claypool Publishers, USA (2011).
  29. Stratton JA, Electromagnetic Theory, p. 1, McGrow-Hill, New York, (1941).
  30. Yee K, IEEE Trans. Antenn. Propag, 14, 302 (1966)
  31. Duche D, Torchio P, Escoubas L, Monestier F, Simon JJ, Flory F, Mathian G, Sol. Energy Mater. Sol. Cells, 93(8), 1377 (2009)
  32. Lee H, Lee I, Park H, New Phys.: Sae Mulli, 68, 781 (2018)
  33. Palik ED, Handbook of Optical Constants of Solids, p. 3, Academic Press, Massachussetts (1998).
  34. Matheu P, Lim SH, Derkacs D, McPheeters C, Yu ET, Appl. Phys. Lett., 93, 113018 (2008)
  35. Hessel A, Oliner AA, Appl. Optics, 4, 1275 (1965)
  36. Feng S, Darmawi S, Henning T, Klar PJ, Zhang X, Small, 8, 1937 (2012)