Macromolecular Research, Vol.28, No.13, 1232-1240, December, 2020
Freeze Dried Biodegradable Polycaprolactone/Chitosan/Gelatin Porous Scaffolds for Bone Substitute Applications
E-mail:
In current work, the porous 3D bone substitute scaffolds based on the chitosan, gelatin and polycaprolactone using freeze drying technique are introduced. SEM images showed that all the scaffolds had porous structures with average pore diameter size of 23-183 μm. The results of FTIR demonstrated the successful blending of scaffolds. Also, the compression test results determined that the presence of polycaprolactone effectively improved the mechanical properties of the chitosan/ gelatin/polycaprolactone scaffolds, having the highest strength, i.e. 2.5 MPa and
highest modulus, i.e. 3.86 MPa. The degradation behavior obtained under lysozyme/ PBS solutions revealed that the chitosan/gelatin scaffold had a faster degradation rate rather than other scaffolds. MTT assay as well as cell attachment analysis confirmed the appropriate cell viability and cell adhesion on the scaffolds. Taken together, the scaffolds developed in this study may find potential application in bone substitution applications.
Keywords:polycaprolactone;gelatin;chitosan;porous 3D scaffold;freeze drying technique;bone substitution
- Hajizadeh A, et al., Nano/Micro Structured Scaffolds in Tissue Engineering: Amirkabir University of Technology (Tehran Polytechnic), 1st ed., 1395.
- Dutta RC, Dey M, Dutta AK, Basu B, Biotechnol. Adv., 35, 240 (2017)
- Chong LH, et al., Poly(Caprolactone), 10th Asian Control Conference (ASCC), 2015.
- Julla JB, et al., Lipid-Activated Nuclear Receptors, Methods in Molecular Biology, Humana Press, New York, Vol. 1951, pp 33 2018.
- Saeed K, Park SY, Iranian J. Chem. Chem. Eng., 29, 77 (2010)
- Maji K, Dasgupta S, Pramanik K, Bissoyi A, Int. J. Biomater., 2016, 982565 (2016)
- Sarasam A, Madihally SV, Biomaterials, 26, 5500 (2005).
- Bohner M, Lemaitre J, Biomaterials, 30, 2175 (2009)
- Pan H, Zhao X, Darvell BW, Lu WW, Acta Biomater., 6, 4181 (2010)
- Naqshbandi AR, Sopyan I, Gunawan, Recent Patents Mater. Sci., 6, 238 (2013)
- Sanchez-Salcedo S, Arcos D, Vallet-Regi M, Key Eng. Mater., 2, 19 (2008)
- Gautam S, Chou CF, Dinda AK, Potdar PD, Mishra NC, J. Mater. Sci., 49(3), 1076 (2014)
- Bolaina-Lorenzo E, Martinez-Ramos C, Monleon-Pradas M, Herrera-Kao W, Cauich-Rodriguez JV, Cervantes-Uc JM, Biomed. Mater., 12, 015008 (2017)
- Kundanati L, Singh SK, Mandal BB, Murthy TG, Gundiah N, Pugno NM, Int. J. Mol. Sci., 17, 238 (2016)
- Moeini S, Mohammadi MR, Simchi A, Bioact. Mater., 2, 1 (2017)
- Maji K, Dasgupta S, Pramanik K, Bissoyi A, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 86, 83 (2018)
- Maji K, Dasgupta S, Kundu B, Bissoyi A, J. Biomater. Sci.-Polym. Ed., 26, 1190 (2015)
- Mohamed S, Shamaz BH, Int. J. Dent. Oral Health, 1, 15 (2015)
- Niemela T, Kellomaki M, in Bioactive Glasses, Woodhead Publishing, Cambridge, pp.227 2011.
- Vroman I, Tighzert L, Materials, 2, 307 (2009)
- Banerjee A, Chatterjee K, Madras G, Mater. Sci. Technol., 30, 567 (2014)
- Azhar FF, Olad A, Salehi R, Des. Monomers Polym., 17, 654 (2014)
- Diaz E, Sandonis I, Valle MB, J. Nanomater., 2014, 1 (2014)
- Peter M, Binulal NS, Nair SV, Selvamurugan N, Tamura H, Jayakumar R, Chem. Eng. J., 158(2), 353 (2010)
- Kozehkonan GS, Salehi M, Farzamfar S, Ghanbari H, Adabi M, Amani A, Nanomedicine J., 6, 311 (2019)
- Thuaksuban N, Nuntanaranont T, Pattanachot W, Suttapreyasri S, Cheung LK, Biomed. Mater., 6, 015009 (2011)
- Pourahmad J, Salimi A, Iranian J. Pharm. Res., 14, 679 (2015)
- Serban GM, Manescu IB, Manu DR, Dobreanu M, Acta Medica Marisiensis, 64, 83 (2018)
- PULAT M, The Eurasia Proceedings of Educational & Social Sciences (EPESS), 6, 111 (2019).
- Peter M, Ganesh N, Selvamurugan N, Nair SV, Furuike T, Tamura H, Jayakumar R, Carbohydr. Polym., 80, 687 (2010)