화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.92, 101-108, December, 2020
Evaluation and comparison of Fenton-like oxidation with Fenton’s oxidation for hazardous methoxyanilines in aqueous solution
E-mail:
Methoxyanilines are aniline derivatives that are important chemical precursors for numerous Dye and Pharmaceuticals industries. Wastewater containing methoxyanilines have high toxicity and carcinogenic properties and if discharged without prior treatment into fresh water resources, can result in possible detrimental eff ;ects to aquatic life and public health. Therefore, in this work Fenton-like oxidation was evaluated for the degradation of 2-methoxyaniline (2-MA) and 4-methoxyaniline (4-MA) separately using abundantly available Laterite soil as an alternative source of iron against commercially procured iron (CI) in Fenton-oxidation. Parameters like hydrogen peroxide (H2O2), iron and initial methoxyanilines concentration were investigated for each of the methoxyanilines in separate experiments. For initial methoxyanilines concentration of 0.5 mM, the maximum methoxyanilines removal of 83.28 ± 0.26% and 86.34 ± 0.34% and COD removal of 71.91 ± 0.31% and 72.64 ± 0.29% for 2-MA and 4-MA at pH 3 and pH 2.5 was attained at laterite soil iron [LSI] of 0.05 mM respectively. From kinetic studies of 2-MA and 4-MA, reaction time was estimated to be 360 min. Degradation with LSI was found to be slower and lesser than CI, but is comparable and can be applied as a replacement of CI for treatment of wastewater containing toxic and incalcitrant chemicals.
  1. Lee SY, Kim GH, Yun SH, Choi CW, Yi YS, Kim J, Chung YH, Park EC, Kim S, PLoS One, 11(4), e01542 (2016)
  2. Martins M, Rodriges-Lima F, Dairou J, Lamouri A, Malagnac F, Silar P, Dupret JM, J. Biol. Chem., 284(28), 18726 (2009)
  3. Delnavaz M, Ayati B, Ganjidoust H, Iran. J. Environ. Health Sci. Eng., 5(4), 243 (2008)
  4. Mohammed M, Mekala LP, Chintalapati S, Chintalapati VR, J. Hazard. Mater., 385, 121571 (2019)
  5. Mujahid M, Sasikala C, Ramana VC, PLoS One, 9(2), 1 (2014)
  6. Herrero M, Rovira J, Esplugas R, Nadal M, Domingo JL, Environ. Res., 181, 108951 (2020)
  7. Pohanish RP, Sittig’s Handbook of Toxic and Hazardous Chemicals and Carcinogens, William Andrew, 2017.
  8. IARC, ortho- and para-Anisidine and their hydrochlorides. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, vol. 27, International Agency for Research on Cancer, Lyon, France, p63 1982.
  9. NTP (National Toxicology Program), Research Triangle Park, NC, 2016.
  10. Chaturvedi NK, Katoch SS, Appl. Water Sci., 10(1), 1 (2020)
  11. Barsan ME, DHHS (NIOSH) Publication No. 2005-149. Center for Disease Control and Prevention, 2007.
  12. Jiang Y, Wei L, Yang K, Wang H, Sci. Total Environ., 646, 841 (2019)
  13. Amani A, Jalilnejad E, Mousavi SM, J. Ind. Eng. Chem., 59, 310 (2018)
  14. Chen J, Xie S, Sci. Total Environ., 640-641(3), 1465 (2018)
  15. Wang Y, Pan Y, Zhu T, Wang A, Lu Y, Lv L, Zhang K, Li Z, Sci. Total Environ., 634, 646 (2018)
  16. Singh K, Dharmendra, Pollution, 6(1), 79 (2020)
  17. Wang Z, Wu S, He Z, Sci. Total Environ., 677, 382 (2019)
  18. An BM, Seo SJ, Hidayat S, Park JY, J. Ind. Eng. Chem., 81, 1 (2020)
  19. Chaturvedi NK, Katoch SS, J. Health Pollut., 10(25), 200302 (2020)
  20. Sbardella L, Velo-Gala I, Comas J, Layret IRR, Fenu A, Gernjak W, J. Hazard. Mater., 380, 120869 (2019)
  21. Ebele AJ, Abdallah MAE, Harrad S, Emerg. Contam., 3(1), 1 (2017)
  22. Rivera-Utrilla J, Sanchez-Polo M, Ferro-Garcia MA, Prados-Joya G, Ocampo-Perez R, Chemosphere, 93(7), 1268 (2013)
  23. Gharaee A, Khosravi-Nikou MR, Anvaripour B, J. Ind. Eng. Chem., 79, 181 (2019)
  24. Chaturvedi NK, Katoch SS, Pollution, 6(1), 127 (2020)
  25. Babaei AA, Kakavandic B, Rafiee M, Kalantarhormizi F, Purkaram I, Ahmadi E, Esmaeili S, J. Ind. Eng. Chem., 56, 163 (2017)
  26. Manu B, Mahamood S, Water Sci. Technol., 64(12), 2433 (2011)
  27. Heo JN, Do JY, Son NG, Kim JY, Kim YS, Hwang HJ, Kang MS, J. Ind. Eng. Chem., 70, 372 (2019)
  28. Li R, Hong S, Li X, Zhang B, Tian H, Huang Y, J. Ind. Eng. Chem., 78, 90 (2019)
  29. Mortazavian S, Jones-Lepp T, Bae JH, Chun DW, Bandala ER, Moon JY, J. Ind. Eng. Chem., 76, 197 (2019)
  30. Zeng S, Jin X, Rajarathnam D, Chen Z, J. Ind. Eng. Chem., 77, 238 (2019)
  31. Park JH, Wang JJ, Fafti N, Delaune RD, J. Ind. Eng. Chem., 71, 201 (2019)
  32. Amritha AS, Manu B, Water Sci. Technol., 74(8), 1919 (2016)
  33. Sangami S, Manu B, Environ. Technol. Innov., 8, 150 (2017)
  34. Khataee A, Salahpour F, Fathinia M, Seyyedi B, Vahid B, J. Ind. Eng. Chem., 26, 125 (2015)
  35. Bajpai M, Katoch SS, Chaturvedi NK, Water Sci. Technol. (2020).
  36. Cecconet D, Molognoni D, Callegari A, Capodaglio AG, J. Environ. Chem. Eng., 5(4), 3590 (2017)
  37. Lester Y, Aga DS, Love NG, Singh RR, Morrissey I, Linden KG, Water Environ. Res., 88(11), 1985 (2016)
  38. Olanipekun EO, Int. J. Miner. Process., 60(1), 9 (2000)
  39. Ko TH, Sci. World J., 1 (2014).
  40. Fu FL, Wang Q, Tang B, Chem. Eng. J., 155(3), 769 (2009)
  41. Laat JD, Gallard H, Environ. Sci. Technol., 33(16), 2726 (1999)
  42. Dbira S, Bensalah N, Zagho MM, Ennahaoui M, Bedoui A, Appl. Sci., 9(1) (2019)
  43. Bouafia-Chergui S, Oturan N, Khalaf H, Oturan MA, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 45(5), 622 (2010)
  44. Gulkaya I, Surucu GA, Dilek FB, J. Hazard. Mater., 136(3), 763 (2006)