화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.92, 184-190, December, 2020
Renewable epoxy thermosets with extremely high biomass content from furan derivatives and their flame retardancy
E-mail:
As renewable thermosets, a furan-based epoxy resin, 2,5-bis[(2-oxiranylmethoxy)methyl] furan (BOF), and a furan-based amine curing agent, difurfuryl diamine (DFDA), were synthesized using 5-hydroxymethyl-2-furfural (HMF) and furfurylamine (FFAM), respectively. A novel phosphoruscontaining, furan-based, flame-retardant epoxy (PFFE) was also synthesized using HMF, FFAM and diethylphosphite to improve the flame retardancy of BOF. PFFE had high biomass content and improved the flame retardancy of BOF because PFFE had both furan and phosphorous groups in its molecular structure. To observe the changes in the physical properties following the addition of PFFE, BOF and PFFE mixtures (BOF/PFFE), BOF, and a diglycidyl ether of bisphenol-A (DGEBA) were cured with DFDA, and their thermal, mechanical, and flame retardancy properties were measured and compared. The glass transition temperature, crosslinking density, and tensile strength of the (BOF/PFFE)-DFDA system were enhanced with increased amounts of PFFE. The BOF/PFFE mixture resin (1:1 by wt.) showed comparable tensile strength to DGEBA and had a higher tensile modulus due to the effect of increased crosslinking density and intermolecular hydrogen bonding. Owing to the furan and phosphorus groups, (BOF/PFFE)- DFDA showed remarkably improved flame retardancy by reducing the release of total heat, the rate of heat release, and the spread of fire.
  1. Schneiderman DK, Hillmyer MA, Macromolecules, 50(10), 3733 (2017)
  2. Bazaka K, Jacob MV, Ostrikov K, Chem. Rev., 116(1), 163 (2016)
  3. Granone LJ, Sieland F, Zheng N, Dillert R, Bahnemann DW, Green Chem., 20, 1169 (2018)
  4. Hu B, Wang Y, Xie M, Hu G, Ma F, Zeng X, J. Funct. Foods, 15, 593 (2015)
  5. Li WSJ, Negrell C, Ladmiral V, Lai-Kee-Him J, Bron P, Lacroix-Desmazes P, Joly-Duhamel C, Caillol S, Polym. Chem., 9, 2468 (2018)
  6. Grossman A, Vermerris W, Curr. Opin. Biotechnol., 56, 112 (2019)
  7. Amarasekara AS, Garcia-Obergon R, Thompson AK, J. Appl. Polym. Sci., 136, 47000 (2019)
  8. McKenna SM, Mines P, Law P, Kovacs-Schreiner K, Birmingham WR, Turner NJ, Leimkuhler S, Carnell AJ, Green Chem., 19(19), 4660 (2017)
  9. Sajid M, Zhao X, Liu D, Green Chem., 20, 5427 (2018)
  10. Chatterjee M, Ishizaka T, Kawanami H, Green Chem., 16, 4734 (2014)
  11. Jain AB, Vaidya PD, Int. J. Chem. Kinet., 48, 318 (216)
  12. Xu ZH, Cheng AD, Xing XP, Zong MH, Bai YP, Li N, Bioresour. Technol., 262, 177 (2018)
  13. Jiang M, Liu Q, Zhang Q, Ye C, Zhou GY, J. Polym. Sci. A: Polym. Chem., 50(5), 1026 (2012)
  14. Gubbels E, Jasinska-Walc L, Koning CE, J. Polym. Sci. A: Polym. Chem., 51(4), 890 (2013)
  15. Gandini A, Silvestre AJD, Pascoal Neto C, Sousa AF, Gomes M, J. Polym. Sci. A: Polym. Chem., 47(1), 295 (2009)
  16. Papageorgiou GZ, Papageorgiou DG, Terzopoulou Z, Bikiaris DN, Eur. Polym. J., 83, 202 (2016)
  17. Gandini A, Belgacem MN, Prog. Polym. Sci., 22, 1203 (1997)
  18. Moreau C, Belgacem MN, Gandini A, Top. Catal., 27, 11 (2004)
  19. Boufi S, Belgacem MN, Quillerou J, Gandini A, Macromolecules, 26, 6706 (1993)
  20. Burgess SK, Kriegel RM, Koros WJ, Macromolecules, 48(7), 2184 (2015)
  21. Burgess SK, Mikkilineni DS, Yu DB, Kim DJ, Mubarak CR, Kriegel RM, Koros WJ, Polymer, 55, 6870 (2014)
  22. Jiang Y, Woortman AJJ, van Ekenstein GORA, Petrovic DM, Loos K, Biomacromolecules, 15(7), 2482 (2014)
  23. Zhang Y, Li T, Xie ZN, Han JR, Xu J, Guo BH, Ind. Eng. Chem. Res., 56(14), 3937 (2017)
  24. Amarasekara AS, Renewable Polymers: Synthesis, Processing, and Technolo-gy, Wiley, New jersey, pp.381 2011.
  25. Zeng C, Seino H, Ren J, Hatanaka K, Yoshie N, Macromolecules, 46(5), 1794 (2013)
  26. Cai S, Qiang Z, Zeng C, Ren J, Mater. Res. Express, 6, 045701 (2019)
  27. Cho JK, Lee JS, Jeong J, Kim B, Kim B, Kim S, Shin S, Kim HJ, Lee SH, J. Adhes. Sci. Technol., 27(18-19), 2127 (2013)
  28. Deng J, Liu X, Li C, Jiang Y, Zhu J, RSC Adv, 5, 15930 (2015)
  29. Liu Y, Zhou K, Shu H, Liu H, Lou J, Guo D, Wei Z, Li X, Catal. Sci. Technol., 7, 4129 (2017)
  30. Kandola BK, Ebdon JR, Chowdhury KP, Polymers, 7, 298 (2015)
  31. Miao JT, Yuan L, Guan Q, Liang G, Gu A, ACS Sustain. Chem. Eng., 5, 7003 (2017)
  32. Menard R, Negrell C, Fache M, Ferry L, Sonnier R, David G, RSC Adv, 5, 70856 (2015)
  33. Toan M, Park JW, Kim HJ, Shin S, Fire Mater, 43(6), 717 (2019)
  34. Wang S, Ma SQ, Xu CX, Liu Y, Dai JY, Wang ZB, Liu XQ, Chen J, Shen XB, Wei JJ, Zhu J, Macromolecules, 50(5), 1892 (2017)
  35. Nikolic G, Zlatkovic S, Cakic M, Cakic S, Lacnjevac C, Rajic Z, Sensors, 10, 684 (2010)
  36. Li K, Huo N, Liu X, Cheng J, Zhang J, RSC Adv, 6(1), 769 (2015)
  37. Shen XB, Liu XQ, Dai JY, Liu Y, Zhang YJ, Zhu J, Ind. Eng. Chem. Res., 56(38), 10929 (2017)
  38. Meng J, Zeng Y, Zhu G, Zhang J, Chen P, Chen Y, Fang Z, Guo K, Polym. Chem., 10, 2370 (2019)