화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.92, 218-225, December, 2020
Synthesis and luminescence properties of β-NaRE0.95Eu0.05F4 (RE¼Y, Lu)
E-mail:
On the base of β-NaYF4 and β-NaLuF4 compounds, optimal synthesis methods were selected to obtain highly crystalline Eu3+-doped compounds in the hexagonal (β) structure. The compounds β-NaY0.95Eu0.05F4 and β-NaLu0.95Eu0.05F4 were synthesized by hydrothermal synthesis. The concentration of Na2EDTA introduced into the reaction system as a modifier affects the shape and size of the product from elongated hexagonal prisms to quartz-like crystals. The thermal behavior of the compounds has been studied; the temperature of the polymorphic transition from hexagonal to cubic structure is 680 °C for β-NaY0.95Eu0.05F4 and 624 °C for β-NaY0.95Eu0.05F4, the melting point of α-NaRE0.95Eu0.05F4 is about 900 °C. Under excitation with UV-light of l = 393 nm, β-NaY0.95Eu0.05F4 and β-NaLu0.95Eu0.05F4 show the emission lines of direct Eu3+ f-f transitions, with the presence of the emission from higher Eu3+ excited states (up to 5H3) in both samples, which is responsible for the more orange color of emission instead of the usual red for Eu3+. Emission decay times are slightly longer for β-NaY0.95Eu0.05F4 than for β-NaLu0.95Eu0.05F4, which is the result of a bigger unit cell for the former, leading to longer interatomic distances between Eu3+ ions in the lattice. The luminescence mechanisms for the doped lanthanide ions were thoroughly analyzed.
  1. Shinmen M, Sasahara K, Nakamura S, Kanbara T, Yajima T, J. Fluor. Chem., 229, 109417 (2020)
  2. Schneider L, Wehmeier J, Wiedwald U, Rodewald J, Galakhov VR, et al., J. Phys. Chem. C, 124, 18194 (2020)
  3. Ribbeck T, Kerpen C, Low D, Sedykh AE, Muller-Buschbaum K, Ignat’ev NV, Finze M, J. Fluor. Chem., 219, 70 (2019)
  4. Ameduri B, Chem. Eur. J., 24, 18830 (2018)
  5. Yu W, Wang X, Chen N, Du G, Gui W, CrystEngComm, 16, 3214 (2014)
  6. Zhang Z, Tan TT, Pan Stanford Publishing Pte. Ltd., Singapore, 161 (2012).
  7. Li S, Zhang X, Hou Z, Cheng Z, Ma P, Lin J, Nanoscale, 4, 5619 (2012)
  8. Huang H, Chen J, Liu Y, Lin J, Wang S, Huang F, Chen D, Small, 16, 200070 (2020)
  9. Kuznetzov SV, Osiko VV, Tkatchenko EA, Fedorov PP, Russ. Chem. Rev., 75, 1065 (2006)
  10. Yang X, Xiao S, Ding JW, Yan XH, J. Mater. Sci., 42(16), 7042 (2007)
  11. Yang LW, Zhang YY, Li JJ, Li Y, Zhong JX, Chu PK, Nanoscale, 2, 2805 (2010)
  12. Bednarkewies A, Mech A, Karbowiak M, Strek W, J. Lumines., 114, 247 (2005)
  13. Wang F, Han Y, Lim C, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X, Nature, 463, 1061 (2010)
  14. Runowski M, Ekner-Grzyb A, Mrowczynska L, Balabhadra S, Grzyb T, Paczesny J, Zep A, Lis S, Langmuir, 30(31), 9533 (2014)
  15. Grzyb T, Mrowczynska L, Szczeszak A, Sniadecki Z, Runowski M, Idzikowski B, Lis S, J. Nanopart. Res., 17, 399 (2015)
  16. Pang M, Feng J, Song S, Wang Z, Zhang H, CrystEngComm, 15, 6901 (2013)
  17. Huang X, Han S, Huang W, Liu X, Chem. Soc. Rev., 42, 173 (2013)
  18. Lian HZ, Hou ZY, Shang MM, Geng DL, Zhang Y, Lin J, Energy, 57, 270 (2013)
  19. Mai HX, Zhang YW, Si R, Yan ZG, Sun LD, You LP, Yan CH, J. Am. Chem. Soc., 128(19), 6426 (2006)
  20. Wang L, Li Y, Nano Lett., 6, 1645 (2006)
  21. Kramer KW, Biner D, Frei G, Gudel HU, Hehlen MP, Luthi SR, Chem. Mater., 16, 1244 (2004)
  22. Sobolev BP, Mineev DA, Pashutin VP, Dokl. Akad. Nauk, 150, 791 (1963)
  23. Fedorov PP, Russ. J. Inorg. Chem., 44, 1703 (1999)
  24. Li CX, Quan ZW, Yang J, Yang PP, Lin J, Inorg. Chem., 46(16), 6329 (2007)
  25. Wang F, Chatterjee DK, Li Z, Zhang Y, Fan X, Wang M, Nanotechnology, 17, 5786 (2006)
  26. Banski M, Podhorodecki A, Misiewicz J, Phys. Chem. Chem. Phys., 15, 19232 (2013)
  27. Chen J, Wang S, Li S, Huang F, Chen D, J. European Ceram. Soc., 39, 5364 (2019)
  28. Liu Q, Sun Y, Yang TS, Feng W, Li CG, Li FY, J. Am. Chem. Soc., 133(43), 17122 (2011)
  29. Shi F, Wang J, Zhai X, Zhao D, Qin W, CrystEngComm, 13, 3782 (2011)
  30. Tan CB, Liu YX, Li WB, J. Mater. Sci., 46(9), 3066 (2011)
  31. Niu N, He F, Huang S, Gai S, Zhang X, Yang P, RSC Adv., 2, 10337 (2012)
  32. Jia G, You HP, Song YH, Jia JJ, Zheng YH, Zhang LH, Liu K, Zhang HJ, Inorg. Chem., 48(21), 10193 (2009)
  33. Ghosh P, Patra A, J. Phys. Chem. C, 112, 3223 (2008)
  34. Li X, Chen D, Huang F, Chang G, Zhao J, Qiao X, Xu X, Du J, Yin M, Laser Photon. Rev., 12, 180003 (2018)
  35. Stepuk A, Casola G, Schumacher CM, Stepuk A, Casola G, Schumacher CM, Kra.mer KW, Stark WJ, Chem. Mater., 26, 2015 (2014)
  36. Razumkova LA, J. Fluor. Chem., 205, 1 (2018)
  37. Fedorov PP, Kuznetsov SV, Voronov VV, Yarotskaya IV, Arbenina VV, Russ. J. Inorg. Chem., 53, 1681 (2008)
  38. Shan J, Qin X, Yao N, Ju Y, Nanotechnology, 18, 445607 (2007)
  39. Rinkel T, Raj AN, Duhnen S, Haase M, Angew. Chem.-Int. Edit., 55, 1164 (2016)
  40. Li X, Xue Z, Liu H, J. Alloy. Compd., 681, 379 (2016)
  41. Suyver JF, Aebischer A, Biner D, Gerner P, Grimm J, Heer S, Kramer KW, Reinhard C, Gudel HU, Opt. Mater., 27, 1111 (2005)
  42. Chen J, Peng Y, Li X, Chen W, Huang H, Lin L, Chen D, J. Mater. Chem. C, 7, 4109 (2019)
  43. Denisenko YG, Molokeev MS, Krylov AS, Aleksandrovsky AS, Oreshonkov AS, Atuchin VV, Azarapin NO, Plyusnin PE, Sal’nikova EI, Andreev OV, J. Ind. Eng. Chem., 79, 62 (2019)
  44. Wang Z, Feng J, Song S, Sun Z, Yao S, Ge X, Pang M, Zhang H, J. Mater. Chem. C, 2, 9004 (2014)
  45. Podhorodecki A, Banski M, Noculak A, Sojka B, Pawlik G, Misiewicz J, Nanoscale, 5, 429 (2013)
  46. Zhang Y, Chen B, Xu S, Li X, Zhang J, Sun J, Zhang X, Xia H, Hua R, Phys. Chem. Chem. Phys., 20, 15876 (2018)
  47. Ekambaram S, Maaza M, J. Alloy. Compd., 395, 132 (2005)
  48. Ge K, Sun W, Zhang S, Wang S, Jia G, Zhang C, Zhang J, RSC adv., 6, 21725 (2016)
  49. Andreev OV, Razumkova IA, Boiko OV, J. Fluor. Chem., 207, 77 (2018)
  50. Denisenko YG, Khritokhin NA, Andreev OV, Basova SA, Sal’nikova EI, Polkovnikov AA, J. Solid State Chem., 255, 219 (2017)
  51. Razumkova IA, Denisenko YG, Boyko AN, Ikonnikov DA, Aleksan-drovsky AS, Azarapin NO, Andreev OV, Anorg Z, Allg. Chem., 645, 1393 (2019)
  52. Fedorov P, Mayakova M, Voronov V, Baranchikov A, Ivanov V, J. Fluor. Chem., 218, 69 (2019)
  53. Liu Q, Sun Y, Yang TS, Feng W, Li CG, Li FY, J. Am. Chem. Soc., 133(43), 17122 (2011)
  54. Ding MY, Lu CH, Cao LH, Song JB, Ni YR, Xu ZZ, J. Mater. Sci., 48(14), 4989 (2013)
  55. Shannon RD, Acta Crystallogr. Sect. A, 32, 751 (1976)
  56. Runowski M, Stopikowska N, Szeremeta D, Goderski S, Skwierczyn’ska M, Lis S, ACS Appl. Mater. Interfaces, 11, 13389 (2019)
  57. Sathyaseelan B, Manikandan E, Sivakumar K, Kennedy J, Maaza M, J. Alloy. Compd., 651, 479 (2015)
  58. Kibasomba PM, Dhlamini S, Maaza M, Liu CP, Rashad MM, Rayan DA, Mwakikunga BW, Results Phys., 9, 628 (2018)
  59. Ngom BD, Mpahane T, Manikandan E, Maaza M, J. Alloy. Compd., 656, 758 (2016)
  60. Hearne GR, Zhao J, Dawe AM, Pischedda V, Maaza M, Nieuwoudt MK, Kibasomba P, Nemraoui O, Comins JD, Witcomb MJ, Phys. Rev. B, 70, 134102 (2004)
  61. Zhu LL, Liu BQ, Chen XY, Feng A, Zhang ZJ, Zhao JT, Mater. Res. Bull., 68, 289 (2015)
  62. Wei Y, Lu F, Zhang X, Chen D, Chem. Mater., 18, 5733 (2006)
  63. Fedorov PP, Russ. J. Inorg. Chem, 44(11), 1709 (1999)
  64. Laihinen T, Lastusaari M, Pihlgren L, Rodrigues LC, Holsa J, J. Therm. Anal. Calorim., 121, 37 (2015)
  65. Thoma RE, Hebert GM, Insley H, Weaver CF, Inorg. Chem., 2, 1005 (1963)
  66. Kuznetsov SV, Ovsyannikova AA, Tupitsyna EA, Yasyrkina DS, Voronov VV, Batyrev NI, Iskhakova LD, Osiko VV, Fedorov PP, J. Fluor. Chem., 161, 95 (2014)
  67. Spedding FH, Henderson DC, J. Chem. Phys., 54, 2476 (1971)
  68. Carnall WT, Fields PR, Rajnak K, J. Chem. Phys., 49, 4450 (1968)
  69. Li C, Zhang C, Hou Z, Wang L, Quan Z, Lian H, Lin J, J. Phys. Chem. C, 113, 2332 (2009)
  70. Tu D, Liu Y, Zhu H, Li R, Liu L, Chen X, Angew. Chem.-Int. Edit., 52, 1128 (213)
  71. Guo S, Cao C, Cao R, J. Nanosci. Nanotechnol., 16, 3857 (2016)
  72. Tao F, Pan F, Wang Z, Cai W, Yao L, CrystEngComm, 12, 4263 (2010)
  73. Zakaria D, Fournier MT, Mahiou R, Cousseins JC, J. Alloy. Compd., 188, 250 (1992)
  74. Ghosh P, Patra A, J. Phys. Chem. C, 112, 19283 (2008)
  75. Jia G, Tanner PA, J. Alloy. Compd., 471, 557 (2009)
  76. Sedykh AE, Kurth DG, Muller-Buschbaum K, Eur. J. Inorg. Chem., 2019, 4564 (2019)
  77. Sedykh AE, Sotnik SE, Kurth DG, Volochnyuk DM, Kolotilov SV, Muller-Buschbaum K, Anorg Z. Allg. Chem. (2020).
  78. Matthes PR, Nitsch J, Kuzmanoski A, Feldmann C, Steffen A, Marder TB, Muller-Buschbaum K, Chem. Eur. J., 19, 17369 (2013)
  79. Ramirez AL, Knope KE, Kelley TT, Greig NE, Einkauf JD, de Lill DT, Inorg. Chim. Acta., 392, 46 (2012)
  80. de Sa GF, e Silva FR, Malta OL, J. Alloy. Compd., 207, 457 (1994)
  81. Lunstroot K, Driesen K, Nockemann P, Viau L, Mutin PH, Vioux A, Binnemans K, Phys. Chem. Chem. Phys., 12, 1879 (2010)
  82. Andreiadis ES, Demadrille R, Imbert D, Pecaut J, Mazzanti M, Chem. Eur. J., 15, 9458 (2009)
  83. Murner HR, Chassat E, Thummel RP, Bunzli JCG, J. Chem. Soc. Dalton Trans., 16, 2809 (2000)
  84. Batrice RJ, Ridenour JA, Ayscue RL, Bertke JA, Knope KE, CrystEngComm, 19, 5300 (2017)
  85. Golkowski RT, Settineri NS, Zhao XK, McMillin DR, J. Phys. Chem. A, 119(48), 11650 (2015)
  86. Tian B, Chen B, Tian Y, Li X, Zhang J, Sun J, Zhong H, Cheng L, Fu S, Zhong H, Wang Y, Zhang X, Xia H, Hua R, J. Mater. Chem. C, 1, 2338 (2013)
  87. Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Maaza M, Arab. J. Chem., 13, 606 (2020)
  88. Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Hassan D, Maaza M, Artif. Cells Nanomed. Biotechnol., 46, 838 (2018)
  89. Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Khamlich S, Maaza M, Nanomedicine, 12, 1767 (2017)
  90. Qiu Z, Shu J, Tang D, Anal. Chem., 90, 1021 (2018)
  91. Zhou J, Yang Y, Zhang CY, Chem. Rev., 115(21), 11669 (2015)