화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.92, 243-251, December, 2020
Hydrodeoxygenation of a bio-oil model compound derived from woody biomass using spray-pyrolysis-derived spherical γ-Al2O3-SiO2 catalysts
E-mail:,
In this study, spherical γ-Al2O3-SiO2 catalysts with various Al/Si ratios were prepared by combining the sol-gel and spray pyrolysis (SP) methods. The effectiveness of the product catalysts was then tested via the hydrodeoxygenation (HDO) of guaiacol, a model compound of bio-oil obtained from the pyrolysis of lignocellulosic biomass. Our results showed that the γ-Al2O3-SiO2 catalyst with a 50:50 Al/Si ratio after calcination at 450 °C exhibited the highest guaiacol conversion (81.79%) at a reaction temperature of 300 °C, atmospheric pressure, and a weight hourly space velocity (WHSV) of 6.5 h-1. During guaiacol HDO, the carbon.oxygen cleavage and methyl group transfer reactions occurred on the γ-Al2O3-SiO2 catalyst, which converted the guaiacol into the respective deoxygenated products, including 2,6-xylenol, 2,3,5,6-tetramethyl phenol, pentamethyl benzene, and hexamethyl benzene. The reaction pathways for the conversion of guaiacol HDO were also proposed in this study.
  1. Mendes FL, Silva VT, Pacheco ME, Pinho AR, Henriques CA, Fuel, 264, 116764 (2020)
  2. Li ZY, Jiang EC, Xu XW, Sun Y, Tu R, Renew. Energy, 146, 1991 (2020)
  3. Phan DP, Vo TK, Le VN, Kim JS, Lee EY, J. Ind. Eng. Chem., 83, 351 (2020)
  4. Han YL, Pires APP, Garcia-Perez M, Energy Fuels, 34(1), 516 (2020)
  5. Mathieu Y, Sauvanaud L, Humphreys L, Rowlands W, Maschmeyer T, Corma A, Faraday Discuss., 197, 389 (2017)
  6. Xiao X, Bergstrom H, Saegner R, Johnson B, Sun R, Peterson A, Catal. Sci. Technol., 8, 1819 (2018)
  7. Si Z, Zhang X, Wang C, Ma L, Dong R, Catalyst, 7, 169 (2017)
  8. Verma D, Insyani R, Cahyadi HS, Park JY, Kim SM, Chao JM, Green Chem., 20, 3253 (2018)
  9. Gao D, Schweitzer C, Hwang HT, Varma A, Ind. Eng. Chem. Res., 53(49), 18658 (2014)
  10. Chiu CC, Genest A, Borgna A, RoSch N, ACS Catal., 4, 4178 (2014)
  11. Chen LA, Zhu YL, Zheng HY, Zhang CH, Zhang B, Li YW, J. Mol. Catal. A-Chem., 351, 217 (2011)
  12. Shen D, Cheng C, Liu N, Xiao R, RSC Adv., 1, 1641 (2011)
  13. Mukundan S, Konarova M, Atanda LN, Ma Q, Beltramini J, Catal. Sci. Technol., 5, 4422 (2015)
  14. Cai Z, Wang F, Zhang X, Ahishakiye R, Xie Y, Shen Y, Mol. Catal., 441, 28 (2017)
  15. Ly HV, Galiwango E, Kim SS, Kim J, Choi JH, Woo HC, et al., Chem. Eng. J., 317, 302 (2017)
  16. Choi H, Kim D, Yoon SP, Han J, Ha S, Kim J, J. Anal. Appl. Pyrolysis, 112, 276 (2015)
  17. Li KL, Wang RJ, Chen JX, Energy Fuels, 25(3), 854 (2011)
  18. Wu SK, Lai PC, Lin YC, Wan HP, Lee HT, Chang YH, ACS Susainable Chem. Eng., 1, 349 (2013)
  19. Zhu XL, Lobban LL, Mallinson RG, Resasco DE, J. Catal., 281(1), 21 (2011)
  20. Sitthisa S, Resasco DE, Catal. Lett., 141(6), 784 (2011)
  21. Le TA, Ly HV, Kim J, Kim SS, Choi JH, Woo HC, Othman MR, Chem. Eng. J., 250, 157 (2014)
  22. Cecilia JA, Infantes-Molina A, Rodriguez-Castellon E, Jimenez-Lopez A, Oyama ST, Appl. Catal. B: Environ., 136-137, 140 (2013)
  23. Zhang Q, Qiu K, Li B, Jiang T, Zhang XH, Ma LL, Wang TJ, Fuel, 90(11), 3468 (2011)
  24. Hattori H, Chem. Rev., 95(3), 537 (1995)
  25. Klein MT, Virk PS, Ind. Eng. Chem. Fundam., 22, 35 (1983)
  26. Demirbas A, Energy Conv. Manag., 41(6), 633 (2000)
  27. Van NB, Laurenti D, Afanasiev P, Geantet C, Appl. Catal. B: Environ., 101(3-4), 239 (2011)
  28. Zhao HY, Li D, Bui P, Oyama ST, Appl. Catal. A: Gen., 391(1-2), 305 (2011)
  29. Nimmanwudipong T, Runnebaum RC, Block DE, Gates BC, Energy Fuels, 25(8), 3417 (2011)
  30. Zhu XL, Mallinson RG, Resasco DE, Appl. Catal. A: Gen., 379(1-2), 172 (2010)
  31. Van NB, Laurenti D, Delichere P, Geantet C, Appl. Catal. B: Environ., 101(3-4), 246 (2011)
  32. Vuori A, Bredenberg JBS, Holzforschung, 42, 155 (1988)
  33. Huber GW, Chheda JN, Barrett CJ, Dumesic JA, Sci. New Series, 308, 1446 (2005)
  34. Jahromi H, Agblevor FA, Appl. Catal. A: Gen., 558, 109 (2018)
  35. Lazaridis PA, Fotopoulos AP, Karakoulia SA, Triantafyllidis KS, Front. Chem., 6, 295 (2018)
  36. Sankaranarayanan TM, Berenguer A, Ochoa-Hernandez C, Moreno I, Jana P, Coronado JM, Serrano DP, Pizarro P, Catal. Today, 243, 163 (2015)
  37. Bredenberg JBS, Huuska M, Toropainen P, J. Catal., 120, 401 (1989)
  38. Zhang SP, Yan YJ, Ren JW, Li TC, Energy Sources, 25(1), 57 (2003)
  39. Chorkendorff I, Niemantsverdriet J, Concepts of modern catalysis and kinetics, John Wiley & Sons, pp.167 2007.
  40. Lamouria S, Hamidoucheb M, Bouaouadjaa N, Belhouchetac H, Garnierd V, Fantozzid G, et al., Bol. Soc. Esp. Ceram. Vidrio., 56, 47 (2017)
  41. Kim SS, Lee H, Choi JW, Na BK, Song HK, Catal. Commun., 8, 1438 (2007)
  42. Elliott DC, Energy Fuels, 21(3), 1792 (2007)
  43. Venderbosch RH, Ardiyanti AR, Wildschut J, Oasmaa A, Heeresb HJ, J. Chem. Technol. Biotechnol., 85(5), 674 (2010)
  44. Bykova MV, Zavarukhin SG, Trusov LI, Yakovlev VA, Kinet. Catal., 54, 40 (2013)
  45. Hou X, Qiu Y, Zhang X, Liu G, RSC Adv., 6, 54580 (2016)
  46. Astafan A, Benghalem MA, Pouilloux Y, Patarin J, Bats N, Bouchy C, Daou TJ, Pinard L, J. Catal., 336, 1 (2016)
  47. Epelde E, Ibanez M, Aguayo AT, Gayubo AG, Bilbao J, Castano P, Microporous Mesoporous Mater., 195, 284 (2014)