Journal of Industrial and Engineering Chemistry, Vol.92, 297-302, December, 2020
Solubility determination of surface-active components from dynamic surface tension data
E-mail:
A new technique of utilizing the dynamic surface tension (ST) data for solubility determination was proposed, tested, and verified in this study. Dibutyl phthalate was chosen as the surface-active component and its solutions were prepared with 0, 1, and 5 wt.% aqueous methanol (MeOH) solutions. The solutions for ST measurement were prepared by stirring the aqueous DBP mixtures in a heated water bath (45°C) for an extended duration of time. The data revealed that an increase in DBP concentration corresponded to a more rapid relaxation of dynamic ST and reached a lower equilibrium ST; similar to that observed amongst typical micelle forming surfactants (at C < cmc). Unlike surfactants, an increase in concentration beyond a certain value corresponded to near-identical relaxations of dynamic ST and the same equilibrium ST. For typical surfactants, although the equilibrium ST remained constant when concentration was increased at C > cmc, the dynamic ST relaxations became increasingly rapid. These inconsistencies in dynamic ST behavior pointed towards the absence of micelle formation amongst the DBP molecules. Based on the dynamic ST data, the solubility of DBP in water, 1 wt.%, and 5 wt.% MeOH(aq) were found to be ~6.1, ~4.4, and ~4.7 (10-8 mol/cm3), respectively.
Keywords:Solubility;Dynamic surface tension;Dibutyl phthalate;Surface-Active component;Pendant bubble tensiometer
- Foster RI, Amphlett JTM, Kim KW, Kerry T, Lee KY, Sharrad CA, J. Ind. Eng. Chem., 81, 144 (2020)
- Todd TA, Wigeland RA, ACS Symp. Ser., 41 (2006).
- Jeong CU, Kim JH, Kim YC, J. Ind. Eng. Chem., 87, 187 (2020)
- Wang YH, Khudaida SH, Ong JY, Lee MJ, Chien IL, Ind. Eng. Chem. Res., 59(13), 6007 (2020)
- Alamdari A, Alamdari A, Mowla D, J. Ind. Eng. Chem., 20(5), 3480 (2014)
- Lee CY, Hwang AR, Jose L, Park JH, Jang SA, Song JK, Kim YJ, Cho YY, Jeon HB, Jin JO, Paik HJ, J. Ind. Eng. Chem., 86, 35 (2020)
- Lin SY, Sung LY, Yeh CT, Yu CP, Yu CP, Yang JY, Hu YC, J. Taiwan Inst. Chem. Eng., 82, 1 (2018)
- Fasano E, Bono-Blay F, Cirillo T, Montuori P, Lacorte S, Food Control., 27, 132 (2012)
- Arnot JA, Gobas FA, Environ. Rev., 14, 257 (2006)
- Suhrhoff TJ, Scholz-Bottcher BM, Mar. Pollut. Bull., 102, 84 (2016)
- Ghattas AK, Fischer F, Wick A, Ternes TA, Water Res., 116, 268 (2017)
- Kang EK, Sohn EH, Jung GY, Jung SH, Ha JW, Lee SB, Park IJ, Lee BM, J. Ind. Eng. Chem., 67, 72 (2018)
- Mathieu-Denoncourt J, Wallace SJ, de Solla SR, Langlois VS, Bull. Environ. Contam. Toxicol., 97, 4 (2016)
- Kaczerewska O, Brycki B, Ribosa I, Comelles F, Garcia MT, J. Ind. Eng. Chem., 59, 141 (2018)
- Hefter GT, Tomkins RPT, The experimental determination of solubilities, John Wiley & Sons, Ltd, Chichester, UK, 2003.
- Lian B, Yalkowsky SH, J. Pharm. Sci., 103, 2710 (2014)
- Cappelli CI, Manganelli S, Lombardo A, Gissi A, Benfenati E, Sci. Total Environ., 463-464, 781 (2013)
- Konczol A, Dargo G, Today Technol., 27, 3 (2018)
- Tebes-Stevens C, Patel JM, Koopmans M, Olmstead J, Hilal SH, Pope N, Weber EJ, Wolfe K, Chemosphere, 194, 94 (2018)
- Birch H, Redman AD, Letinski DJ, Lyon DY, Mayer P, Anal. Chim. Acta, 1086, 16 (2019)
- Defoe DL, Holcombe GW, Hammermeister DE, Biesinger KE, Environ. Toxicol. Chem., 9, 623 (1990)
- Kazakevich Y, Lo Brutto R, HPLC for pharmaceutical scientists, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2007.
- Howard PH, Banerjee S, Robillard KH, Environ. Toxicol. Chem., 4, 653 (1985)
- Sullivan KF, Atlas EL, Giam CS, Anal. Chem., 53, 1718 (1981)
- Boese BL, Can. J. Fish. Aquat. Sci., 41, 1713 (1984)
- Letinski DJ, Connelly MJ, Peterson DR, Parkerton TF, Chemosphere, 48, 257 (2002)
- Gani KM, Tyagi VK, Kazmi AA, Environ. Sci. Pollut. Res., 24, 17267 (2017)
- Arfaeinia L, Dobaradaran S, Nasrzadeh F, Shamsi S, Poureshgh Y, Arfaeinia H, Microchem. J., 155, 104719 (2020)
- Thomsen M, Carlsen L, Hvidt S, Environ. Toxicol. Chem., 20, 127 (2001)
- Apelblat A, Manzurola E, J. Chem. Thermodyn., 19, 317 (1987)
- Apelblat A, Manzurola E, J. Chem. Thermodyn., 22, 289 (1990)
- Mohan R, Lorenz H, Myerson AS, Ind. Eng. Chem. Res., 41(19), 4854 (2002)
- Matsuo H, Suzuki Y, Sawamura S, Fluid Phase Equilib., 200(2), 227 (2002)
- Liu J, Lee LS, Environ. Sci. Technol., 41, 5357 (2007)
- Latorre ME, Lifschitz AL, Purslow PP, Meat Sci., 118, 78 (2016)
- Qin C, Li H, Xiao Q, Liu Y, Zhu J, Du Y, Carbohydr. Polym., 63, 367 (2006)
- Mohammadian M, Salami M, Momen S, Alavi F, Emam-Djomeh Z, Moosavi-Movahedi A, Food Hydrocolloids, 87, 902 (2019)
- Kinoshita K, Ishikawa H, Shinoda K, Bull. Chem. Soc. Jpn., 31, 1081 (1958)
- Miyamoto S, Bull. Chem. Soc. Jpn., 33, 375 (1960)
- Miyamoto S, Bull. Chem. Soc. Jpn., 33, 375 (1960)
- Oss CJV, Good RJ, J. Macromol. Sci. Part A - Chem., 26, 1183 (1989)
- Closs B, Courthaudon JL, Lorient D, J. Food Sci., 55, 437 (1990)
- Beneventi D, Carre B, Gandini A, J. Colloid Interface Sci., 237(1), 142 (2001)
- Brix R, Hvidt S, Carlsen L, Chemosphere, 44, 759 (2001)
- Zadymova NM, Karmasheva NV, Poteshnova MV, Tsikurina NN, Colloid J., 64, 400 (2002)
- Casandra A, Lin YC, Tsay RY, Lin SY, J. Mol. Liq., 256, 312 (2018)
- Casandra A, Tsay RY, Lin YC, Lin SY, J. Taiwan Inst. Chem. Eng., 81, 40 (2017)
- Lin SY, Hwang HF, Langmuir, 10(12), 4703 (1994)
- Ishak H, Stephan J, Karam R, Goutaudier C, Mokbel I, Saliba C, Saab J, Fluid Phase Equilib., 427, 362 (2016)
- Xu F, Wang W, Jiang H, Wang Z, Wang Z, Guo P, Sun S, Ding S, Food Anal. Methods., 7, 1619 (2014)
- Kim YH, Seo HS, Min J, Kim YC, Ban YH, Han KY, Park JS, Bae KD, Gu MB, Lee J, J. Appl. Microbiol., 102(1), 221 (2007)
- Balafas D, Shaw K, Whitfield F, Food Chem., 65, 279 (1999)
- Leyder F, Boulanger P, Bull. Environ. Contam. Toxicol., 30, 152 (1983)
- Etzweiler F, Senn E, Schmidt HWH, Anal. Chem., 67, 655 (1995)