Korean Chemical Engineering Research, Vol.59, No.1, 35-41, February, 2021
CNT와 CNF 복합첨가에 따른 Si/SiO2/C 음극활물질의 전기화학적 특성
Electrochemical Characteristics of Si/SiO2/C Anode Material for Lithium-Ion Battery According to Addition of CNT and CNF Compounds
E-mail:
초록
차세대 리튬이차전지용 음극활물질로 각광을 받고 있는 실리콘은 높은 이론용량을 가지고 있어 상용화를 하기 위해 많은 연구가 진행되었다. 하지만 실리콘은 충방전시 부피팽창이 심하고, 전기전도도가 낮은 단점을 가지고 있다. 이러한 문제를 해결하기 위해서 실리콘 표면에 SiO2를 형성시키고, 탄소를 코팅함으로써 실리콘의 부반응을 억제시키고 전기전도도를 향상시켰다. 추가적으로 CNF와 CNT를 복합적으로 첨가하여 부피팽창에 대한 완충효과를 부여하고 전기 전도도를 향상시켰다. 제조된 샘플은 XRD, SEM, EDS로 물리적 특성 분석을 실시하였으며, 전기화학적 특성은 전기 전도도, EIS, CV 그리고 사이클 테스트를 통해 분석하였다. (Si/SiO2/C)+CNT&CNF 복합체의 경우 다른 샘플들에 비하여 높은 전기전도도 및 낮은 전하전달저항을 보여주었으며, 사이클테스트 결과 첫 번째 사이클에서 1528 mAh/g 그리고 50번째 사이클에서 1055 mAh/g의 용량을 가졌으며 83%의 용량 유지율을 보여주었다.
Silicon is a promising next-generation anode material for lithium-ion battery, and it has been studied for commercialization due to the high theoretical capacity. However, it has problems of the volume change during chargedischarge and the poor electrical conductivity. To solve these problems, formation of SiO2 and carbon coating on the surface of silicon crystal were performed to protect the side reaction and enhance the electrical conductivity of silicon. CNT and CNF were also added to mitigate the volume change and increase the conductivity. Physical properties of asprepared samples were analyzed by XRD, SEM, and EDS. Electrochemical characteristics were investigated by electrical conductivity measurement, EIS, CV and cycle performance test. (Si/SiO2/C)+CNT&CNF showed high electrical conductivity and low charge-transfer resistance, and the capacity was 1528 mAh/g at 1st cycle and 1055 mAh/g at 50th cycle with 83% capacity retention.
- Park H, Yeom DH, Kim J, Lee JK, Korean J. Chem. Eng., 32(1), 178 (2015)
- Meng X, Xu Y, Cao H, Lin X, Ning P, Zhang Y, Garcia YG, Sun Z, Green Energy Envrion., 5(1), 22 (2020)
- Jo YJ, Lee JD, Korean J. Chem. Eng., 36(10), 1724 (2019)
- Kim SC, Park YK, Kim BH, Kim HG, Lee WJ, Lee H, Jung SC, Korean J. Chem. Eng., 35(3), 750 (2018)
- Li L, Fang C, Wei W, Zhang L, Ye Z, He G, Huang Y, Nano Energy, 72, 104651 (2020)
- Ren Y, Liu Z, Pourpoint F, Armstrong R, Grey CP, Bruce PG, Angew. Chem.-Int. Edit., 124(9), 2206 (2012)
- Liu H, Wang G, Liu J, Qiao S, Ahn HJ, J. Mater. Chem., 21, 3046 (2011)
- Bresser D, Mueller F, Fiedler M, Krueger S, Kloepsch R, Baither D, Winter M, Paillard E, Passerini S, Chem. Mater., 25(24), 4977 (2013)
- Kim HS, Cho JP, Chem. Mater., 20(5), 1679 (2008)
- Chen Z, Cao Y, Qian J, Ai X, Yang H, J. Solid State Electrochem., 16, 291 (2012)
- Cheng XB, Zhang R, Zhao CZ, Zhang Q, Chem. Rev., 117(15), 10403 (2017)
- Sacci R,L Dudney NJ, More KL, Parent LR, Arslan I, Browning ND, Unocic RR, Chem. Commun., 50, 2104 (2014)
- Shi P, Zhang XQ, Shen X, Zhang R, Liu H, Zhang Q, Adv. Mater. Technol., 5(1), 190080 (2020)
- Majeed MK, Ma G, Cao Y, Mao H, Ma X, Ma W, Chem. Eur. J., 25(51), 11991 (2019)
- Tao HC, Yang XL, Zhang LL, Ni SB, Mater. Chem. Phys., 149(3), 528 (2014)
- Si Q, Hanai K, Ichikawa T, Phillipps MB, Hirano A, Imanishi N, Yamamoto O, Takeda Y, J. Power Sources, 196(22), 9774 (2011)
- Tao HC, Yang XL, Zhang LL, Ni SB, Ionics, 20, 1547 (2014)
- Lee JH, Kim SH, Kim W, Trans. Korean Inst. Power Electron., 14(6), 457 (2009)
- Ge M, Rong J, Fnag X, Zhang A, Lu Y, Zhou C, Nano Res., 6(3), 174 (2013)
- Zeng K, Li T, Qin X, Ling G, Zhang L, Liu Q, Li B, Kang F, Nano Res., 13(11), 2987 (2020)
- Yuan QF, Zhao FG, Zhao YM, Liang ZY, Yan DL, Electrochim. Acta, 115, 16 (2014)
- Wang K, Tan Y, Li P, Xue B, Sun J, ACS Appl. Mater. Inter., 11(41), 37732 (2019)
- Zhu M, Yang J, Chen H, Pan F, J. Mater. Chem. A, 5, 7026 (2017)
- Shao LY, Shu J, Wu KQ, Lin XT, Li P, Shui M, Wang DJ, Long NB, Ren YL, J. Electroanal. Chem., 727, 8 (2014)
- Zhang M, Hou X, Wang J, Li M, Hu S, J. Alloy. Compd., 588, 206 (2014)
- Liu XM, Huang Z, Oh SW, Zhang B, Mam PC, Compos. Sci. Technol., 72, 121 (2012)