Korean Chemical Engineering Research, Vol.59, No.1, 42-48, February, 2021
Zn와 Al을 첨가한 LiNi0.85Co0.15O2 양극활물질의 제조 및 전기화학적 특성평가
Synthesis and Electrochemical Properties of Zn and Al added LiNi0.85Co0.15O2 Cathode Materials
E-mail:
초록
본 연구에서는 LiNi0.85Co0.15O2의 전기화학적 특성과 열적 안정성을 향상시키기 위하여 LiNi0.85Co0.15O2에 이종원소인 Zn와 Al을 함께 첨가하여 고상법으로 합성하였다. 물질의 결정 구조, 크기 및 표면 상태는 XRD, SEM을 이용하여 분석하였고 전기화학적 특성은 충방전기를 이용하여 CV(cyclic voltammetry), 초기 충·방전 프로파일, 출력 특성, 수명특성 등을 측정하였다. Al-O의 강한 결합에너지는 양극활물질의 구조적 안정성을 향상시켰으며, Li+와 Ni2+의 양이온혼합을 막아 전기화학적 특성 또한 향상되었다. Zn의 큰 이온반경은 양극활물질의 격자상수를 증가시켜 단위 셀의 부피가 확장되었다. Zn와 Al을 0.025몰씩 첨가한 물질의 경우, 0.5 C-rate의 전류밀도에서 100 사이클 동안 80%의 용량 유지율을 보여주었으며 이 결과는 NC 양극활물질보다 12% 높은 수치이다. 또한, 5 C-rate에서의 방전용량은 104 mAh/g으로 기존의 NC 양극활물질보다 36 mAh/g 높은 수치를 보였다. Zn과 Al이 0.025몰씩 첨가된 NC 양극활물질은 출력특성, 수명 특성에서 우수한 특성을 보여주었다.
Zn and Al added LiNi0.85Co0.15O2 cathode materials were synthesized to improve electrochemical properties and thermal stability using a solid-state route. Crystal structure, particle size and surface shape of the synthesized cathode materials was measured using XRD (X-ray diffraction) and SEM (scanning electron microscopy). CV (cyclic voltammetry), first charge-discharge profiles, rate capability, and cycle life were measured using battery cycler (Maccor, series 4000). Strong binding energy of Al-O bond enhanced structure stability of cathode material. Electrochemical properties were improved by preventing cation mixing between Li+ and Ni2+. Large ion radius of Zn+ increased lattice parameter of NC cathode material, which meant unit-cell volume was expanded. NCZA25 showed 80% of capacity retention at 0.5 C-rate during 100 cycles, which was 12% higher than that of NC cathode. The discharge capacity of NCZA25 showed 104 mAh/g at 5 C-rate. NCZA25 achieved 36 mAh/g more capacity than that of NC cathod. NCZA25 cathode material showed excellent rate capability and cycling performance.
- Chen Y, Wang GX, Konstantinov K, Liu HK, Dou SX, J. Power Sources, 119-121, 184 (2003)
- Rougier A, Saadoune I, Gravereau P, Willmann P, Delmas C, Solid State Ion., 90(1-4), 83 (1996)
- Ko HS, Kim JH, Wang J, Lee JD, J. Power Sources, 372, 107 (2017)
- Wan DY, Fan ZY, Dong YX, Baasanjav E, Jun HB, Jin B, Jin EM, Jeong SM, J. Nanomater., 2018, 808250 (2018)
- Xiang J, Chang C, Zhang F, Sun J, J. Alloy. Compd., 475, 483 (2009)
- Ryu HH, Park NY, Seo JH, Yu YS, Sharma M, Mucke R, Kaghazchi P, Yoon CS, Sun YK, Mater. Today, 36, 73 (2020)
- Wu L, Tang X, Chen X, Rong Z, Dang W, Wang Y, Li X, Huang L, Zhang Y, J. Power Sources, 4445(1), 227 (2020)
- Park KJ, Ham DJ, Park SY, Jang JH, Yeon DH, Moon S, Ahn SJ, RSC Adv., 10, 26756 (2020)
- Cho WS, Lim YJ, Lee SM, Kim JH, Song JH, Yu JS, Kim YJ, Park MS, ACS Appl. Mater. Inter., 10, 38915 (2018)
- Yoon S, Jung KN, Yeon SH, Jin CS, Shin KH, J. Electroanal. Chem., 683, 88 (2012)
- Kondo H, Takeuchi Y, Sasaki T, Kawauchi S, Itou Y, Hiruta O, Okuda C, Yonemura M, Kamiyama T, Ukyo Y, J. Power Sources, 174(2), 1131 (2007)
- Wang Y, Zhao D, Zhang K, Li Y, Xu B, Liang F, Dai Y, Yao Y, J. Energy Storage, 28, 101182 (2020)
- Chung YM, Ryu SH, Ju JH, Bak YR, Hwang MJ, Kim KW, Cho KK, Ryu KS, Bull. Korean Chem. Soc., 31(8), 2304 (2010)
- He H, Dong J, Zhang D, Chang C, Ceram. Int., 46, 24564 (2020)
- Han CJ, Eom WS, Lee SM, Cho WI, Jang H, J. Power Sources, 144(1), 214 (2005)
- Subramanian V, Fey GTK, Solid State Ion., 148(3-4), 351 (2002)
- Chung YM, Ryu KS, Bull. Korean Chem. Soc., 30(8), 1733 (2009)
- Yao Z, Yin H, Zhou L, Pan G, Wang Y, Xia X, Wu J, Wang X, Tu J, Small, 15(50), 190529 (2019)
- Montes JM, Cuevas FG, Ternero F, Astacio R, Cabellero ES, Cintas J, Metals, 7, 479 (2017)
- Zhong Q, Sacken U, J. Power Sources, 54, 221 (1995)
- Huang B, Li X, Wang Z, Guo H, Xiong X, Ceram. Int., 40, 13223 (2014)
- Jiang Y, Bi YJ, Liu M, Peng Z, Huai LY, Dong P, Duan JG, Chen ZL, Li X, Wang DY, Zhang YJ, Electrochim. Acta, 268, 41 (2018)
- Jeong MH, Kim HC, Lee WT, Ahn SJ, Lee EK, Yoon WS, J. Power Sources, 474(31), 228592 (2020)
- Ju JH, Chung YM, Bak YR, Hwang MJ, Ryu KS, Surf. Rev. Lett., 17(1), 51 (2010)