Korean Chemical Engineering Research, Vol.59, No.1, 85-93, February, 2021
Influencing Parameters on Supercritical Water Reactor Design for Phenol Oxidation
E-mail:
For accurate and reliable process design for phenol oxidation in a plug flow reactor with supercritical water, modeling can be very insightful. Here, the velocity and density distribution along the reactor have been predicted by a numerical model and variations of temperature and phenol mass fraction are calculated under various flow conditions. The numerical model shows that as we proceed along the length of the reactor the temperature falls from above 430 °C to approximately 380 °C. This is because the generated heat from the exothermic reaction is less that the amount lost through the walls of the reactor. Also, along the length, the linear velocity falls to less than one-third of the initial value while the density more than doubles. This is due to the fall in temperature which results in higher density which in turn demands a lower velocity to satisfy the continuity equation. Having a higher oxygen concentration at the reactor inlet leads to much faster phenol destruction; this leads to lower capital costs (shorter reactor will be required); however, the operational expenditures will increase for supplying the needed oxygen. The phenol destruction depends heavily on the kinetic parameters and can be as high as 99.9%. Using different kinetic parameters is shown to significantly influence the predicted distributions inside the reactor and final phenol conversion. These results demonstrate the importance of selecting kinetic parameters carefully particularly when these predictions are used for reactor design.
Keywords:Supercritical water oxidation;Numerical modeling;Plug flow reactor;Advanced oxidation;Reaction engineering
- Kritzer P, Dinjus E, Chem. Eng. J., 83(3), 207 (2001)
- Paradowska M, an experimental study., Universitat Rovira i Virgili, Tarragona(2004).
- Tester JW, Cline JA, Corrosion, 55(11), 1088 (1999)
- Bermejo MD, Cocero MJ, AIChE J., 52(11), 3933 (2006)
- Mylapilli SVP, Reddy SN, J. Environ. Chem. Eng., 7(3), 103165 (2019)
- Yang B, Shen Z, Cheng Z, Ji W, Chemosphere, 188, 642 (2017)
- Zhang J, Wang S, Li Y, Lu J, Chen S, Lou X, Environ. Technol., 38(15), 1949 (2017)
- Yang B, Cheng Z, Fan M, Jia J, Yuan T, Shen Z, Chemosphere, 205, 426 (2018)
- Chen Z, Chen ZL, Yin FJ, Wang GW, Chen HZ, He CL, Xu YJ, J. Hazard. Mater., 332, 205 (2017)
- Silva CL, Ravinder K, Garlapalli RK, Trembly JP, J. Environ. Chem. Eng., 5(1), 488 (2017)
- Qian LL, Wang SZ, Xu DH, Guo Y, Tang XY, Wang LF, Bioresour. Technol., 176, 218 (2015)
- Dong X, Zhang Y, Xu Y, Zhang M, RSC Adv., 5(59), 47488 (2015)
- Gong YM, Guo Y, Sheehan JD, Chen ZF, Wang SZ, Chem. Eng. J., 331, 578 (2018)
- Gong Y, Gou Y, Wan S, Song W, Xu D, Water Res., 100, 116 (2016)
- Fourcault A, Jarana BG, Onento JS, Marias F, Portela JR, Water ReChem. Eng. J., 152(1), 227 (2009)
- Ghoreishi SM, Mortazavi SSM, Hedayati A, Chem. Prod. Process. Model., 10(4), 243 (2015)
- Bazargan M, Fraser D, J. Heat. Trans., 131(6), 61702 (2009)
- Mohseni M, Bazargan M, J. Heat. Trans., 133(7), 71701 (2011)
- Koo M, Lee WK, Lee CH, Chem. Eng. Sci., 52(7), 1201 (1997)
- Perez IV, Rogak S, Branion R, J. Supercrit. Fluids, 30(1), 71 (2004)
- Yermakova A, Mikenin PE, Anikeev VI, Theory Found. Chem. Eng., 40(2), 168 (2006)
- Dong XQ, Gan ZD, Lu XL, Jin WZ, Yu YZ, Zhang MH, Chem. Eng. J., 277, 30 (2015)
- Ma GQ, Zou M, Asian Journal of Chemistry, 27(5), 1695 (2015)
- Vielcazals S, Mercadier J, Marias F, Mateos D, Bottreau M, Cansell F, Marraud C, AIChE J., 52(2), 818 (2006)
- Zhou N, Krishnan A, Vogel F, Peters WA, Adv. Environ. Res., 4(1), 75 (2000)
- Lemmon E, Huber M, McLinden M, NIST Standard Reference Satabase, 23(2002).
- Krajnc M, Levec J, AIChE J., 42(7), 1977 (1996)
- Portela JR, Nebot E, de la Ossa EM, Chem. Eng. J., 81(1-3), 287 (2001)
- Eckenfelder WW, Roth JA, Bowers AR, Chemical Oxidation: Technology for the Nineties, CRC Press, Tennessee (1993).
- Thornton TD, Savage PE, AIChE J., 38(3), 321 (1992)
- Wang SZ, Guo Y, Wang LA, Wang YZ, Xu DH, Ma HH, Fuel Process. Technol., 92(3), 291 (2011)
- Yu JL, Savage PE, Appl. Catal. B: Environ., 28(3-4), 275 (2000)
- Gopalan S, Savage PE, AIChE. J., 41(8), 1864 (1995)
- Guo Y, Wang SZ, Xu DH, Gong YM, Ma HH, Tang XY, Renew. Sust. Energ. Rev., 14, 334 (2010)
- Kalaga A, Trebble M, J. Chem. Eng. Data, 44, 1063 (1999)
- Poling BE, Prausnitz JM, O'connell JP, “The Properties of Gases and Liquids,” McGraw-Hill, New York, NY(2001).
- Uchida H, Usui I, Fuchita A, Matsuoka M, J. Chem. Eng. Data, 49(6), 1560 (2004)
- Klauck M, Grenner A, Taubert K, Martin A, Meinhardt R, Schmelzer J, Ind. Eng. Chem. Res., 47(15), 5119 (2008)
- Ghizellaoui S, Meniai AH, Desalination, 185(1-3), 457 (2005)
- Akiya N, Savage PE, Chem. Rev., 102(8), 2725 (2002)
- Henrikson JT, Chen Z, Savage PE, Ind. Eng. Chem. Res., 42(25), 6303 (2003)