화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.2, 276-291, February, 2021
Carbon adsorbents for methane storage: genesis, synthesis, porosity, adsorption
E-mail:
Adsorbed natural gas (ANG) storage systems are based on nanoporous adsorbents with a tailored porous structure. Activated carbons are among the most promising and widely used candidates for this application, which is explained by the availability and abundance of raw material resources. In the present work, several series of activated carbons prepared from various precursors (coconut shell, peat, polymers, silicon carbide, and mineral coal) by different routes of physical and thermochemical activation were considered in the context of the adsorbed natural gas storage applications. Based on the Dubinin theory of volume filling of micropores and BET method, the porous structure of these adsorbents was evaluated from standard adsorption isotherms. The XRD, SAXS, and SEM measurements revealed variations in the textural and morphological properties of the adsorbents and their dependence on the precursor and synthesis procedure. The pore sizes evaluated from the adsorption and SAXS data were compared. Experimental data on methane adsorption at the temperature of 303 K and pressures of 0.1, 3.5, and 10MPa made it possible to identify the most effective adsorbents. It was shown that the adsorption properties of ACs prepared from peat and mineral coal are determined by surface chemistry inherited from the precursor and activating agent. In contrast, the adsorption performance of ACs from polymer and coconut shell depends solely on the pore volume and pore dimensions. The adsorption effectiveness of each AC varies with pressure as a function of textural properties. Thus, a selection of an optimal adsorbent should be adjusted for thermodynamical coditions of ANG system.
  1. Grint A, Takagishi ST, Final Report. (1990-1993).
  2. Makal TA, Li JR, Lu W, Zhou HC, Chem. Soc. Rev., 41, 7761 (2012)
  3. Tsivadze AY, Aksyutin OE, Ishkov AG, Men'shchikov IE, Fomkin AA, Shkolin AV, Khozina EV, Grachev VA, Russ. Chem. Rev., 87, 950 (2018)
  4. Tsivadze AY, Aksyutin OE, Ishkov AG, Knyazeva MK, Solovtsova OV, Men'shchikov IE, Fomkin AA, Shkolin AV, Khozina EV, Grachev VA, Russ. Chem. Rev., 88, 925 (2019)
  5. Kumar KV, Preuss K, Titirici MM, Rodriguez-Reinoso F, Chem. Rev., 117(3), 1796 (2017)
  6. Rodriguez-Reinoso F, Kaneko K, in Nanoporous materials for gas storage, Springer Nature Singapore Pte Ltd, Singapore (2019).
  7. Fomkin AA, Pribylov AA, Tkachev AG, Memetov NR, et al., Colloid J., 81, 607 (2019)
  8. Policicchio A, Maccallini E, Agostino RG, Ciuchi F, Aloise A, Giordano G, Fuel, 104, 813 (2013)
  9. Men’shchikov IE, Fomkin AA, Tsivadze AY, Shkolin AV, Strizhenov EM, Khozina EV, Adsorption J., 23, 327 (2017)
  10. Tanaka H, El-Merraoui M, Steele WA, Kaneko K, Chem. Phys. Lett., 352(5-6), 334 (2002)
  11. Ganji MD, Mirnejad A, Najafi A, Sci. Technol. Adv. Mat., 11, 045001 (2010)
  12. Zhu X, Zhao YP, J. Phys. Chem. C, 117, 17737 (2014)
  13. Anuchin KV, Fomkin AA, Korotych AP, Tolmachev AM, Prot. Met. Phys. Chem. Surf., 50, 173 (2014)
  14. Fenelonov VB, Poristyi uglerod (Porous Carbon). Izd. Inst. Kataliza SO RAN, Novosibirsk (in Russian) (1995).
  15. Men'shchikov IE, Fomkin AA, Shkolin AV, Yu V. Yakovlev, Khozina EV, Russ. Chem. Bull., 67, 1814 (2018)
  16. Mahmoud E, Surfaces, 3, 433 (2020)
  17. Brunauer S, Emmett PH, Teller E, J. Amer. Chem. Soc., 60, 309 (1938)
  18. Thommes M, Kaneko K, Neimark AV, Olivier JP, RodroAguez-Reinoso F, Rouquerol J, Sing KSW, Pure Appl. Chem., 87, 1051 (2015)
  19. Dubinin MM, Prog. Surf. Memb. Sci., 9, 1 (1975)
  20. Dubinin MM, Carbon, 27, 457 (1989)
  21. Blanco AGG, de Oliveira JCA, Lopez R, Moreno-Pirajan JC, Giraldo L, Zgrablich G, Sapag K, Colloids Surf. A: Physicochem. Eng. Asp., 357, 74 (2010)
  22. Ruiz-Rosas R, Garcia-Mateos FJ, Gutierrez MC, Rodriguez-Mirasol J, Cordero T, Front. Mater., 6, 134 (2019)
  23. Bernal V, Giraldo L, Moreno-Pirajan JC, J. Carbon Res., 4, 62 (2018)
  24. Rodriguez-Reinoso F, University of Alicante, Secretariado de Publicaciones, Alicante (1997).
  25. Rodriguez-Reinoso F, Molina-Sabio M, Gonzalez MT, Carbon, 33, 15 (1995)
  26. Molina-Sabio M, Gonzalez MT, Rodriguez-Reinoso F, Sepulveda-Escribano A, Carbon, 34, 505 (1996)
  27. MOVE Program Overview. Advanced Research Project Agency, US DOE, 2012.
  28. Hui TS, Zaini MAA, Carbon Lett., 16, 275 (2015)
  29. Shirazani MT, Bakhshi H, Rashidi A, Taghizadeh M, J. Environ. Chem. Eng., 8, 103910 (2020)
  30. Nasri NS, Sidik HU, Zaini MAA, Rashid NM, Majid ZA, Chelliapan S, Kumar T, Zain MH, Mohsin R, Zaini N, Chem. Eng. Trans., 72, 61 (2019)
  31. Aleghafouri A, Mohsen-Nia M, Mohajeri A, Mahdyarfar M, Asghari M, Adsorpt. Sci. Technol., 30, 307 (2012)
  32. Bastos-Neto M, Canabrava DV, Torres AEB, Rodriguez-Castellon E, Jimenez-Lopez A, Azevedo DCS, Cavalcante CL, Appl. Surf. Sci., 253(13), 5721 (2007)
  33. Strizhenov EM, Fomkin AA, Zherdev AA, Pribylov AA, Prot. Met. Phys. Chem. Surf., 48, 614 (2012)
  34. Strizhenov EM, Shkolin AV, Fomkin AA, Pribylov AA, Zherdev AA, Smirnov IA, Prot. Met. Phys. Chem. Surf., 49, 521 (2013)
  35. Fomkin AA, Pribylov AA, Murdmaa KO, Pulin AL, Shkolin AV, Men’shchikov IE, Zhedulov SA, Prot. Met. Phys. Chem. Surf., 55, 413 (2019)
  36. Sdanghi G, Schaefer S, Maranzana G, Celzard A, Fierro V, Int. J. Hydrogen Ener., In press (Available online 6 November 2019).
  37. Fomkin AA, Men’shchikov IE, Pribylov AA, Gur’yanov VV, Shkolin AV, Zaitsev DS, Tvardovskii AV, Colloid J., 79, 144 (2017)
  38. Djeridi W, Ouederni A, Wiersum AD, Llewellyn PL, El Mir L, Mater. Lett., 99, 184 (2013)
  39. Kemp KC, Baek SB, Lee WG, Meyyappan M, Kim KS, Nanotechnology, 38, 385602 (2015)
  40. Azevedo DC, Araujo JCS, Bastos-Neto M, Torres AEB, Jaguaribe EF, Cavalcante CL, Microporous Mesoporous Mater., 100, 361 (2007)
  41. Park JE, Lee GB, Hwang SY, Kim JH, Hong BU, Kim H, Kim S, Appl. Sci., 8, 1596 (2018)
  42. Mukhin VM, Tarasov AV, Klushin VN, Aktivnye ugli Rossii (Activated Carbons of Russia), Metallurgiya, Moscow (in Russian) (2000).
  43. Mukhin VM, Zubova ID, Gur’yanov VV, Kurilkin AA, Gostev VS, Sorbts. Khrom. Prots., 9, 191 (2009)
  44. Gatti G, Errahali M, Tei L, Cossi M, Marchese L, Polymers, 11, 588 (2019)
  45. Alvarez-Gutierrez N, Gil MV, Martinez M, Rubiera F, Pevida C, Energies, 9, 189 (2016)
  46. Lozano-Castello D, Cazorla-Amoros D, Linares-Solano A, Energy Fuels, 16, 1321 (2002)
  47. Abdulsalam J, Mulopo J, Oboirien B, Bada S, Falcon R, Int. J. Coal Sci. Technol., 6, 459 (2019)
  48. Uraki Y, Tamai Y, Ogawa M, Gaman S, Tokurad S, BioResources, 4, 205 (2009)
  49. Bergna D, Hu T, Prokkola H, Romar H, Lassi U, Waste Biomass Valorization, 11, 2837 (2020)
  50. Yeon SH, Osswald S, Gogotsi Y, Singer JP, Simmons JM, Fischer JE, Lillo-Rodenas MA, Linares-Solanod A, J. Power Sources, 191(2), 560 (2009)
  51. Oschatz M, Borchardt L, Senkovska I, Klein N, Leistner M, Kaskel S, Carbon, 56, 139 (2013)
  52. Casco ME, Martinez-Escandell M, Gadea-Ramos E, Chem. Phys., 27, 959 (2015)
  53. Ramirez AP, Giraldo1 S, Ulloa M, Florez E, Acelas NY, J. Phys.: Conf. Ser., 935, 012012 (2017)
  54. Hu Z, Srinivasan MP, Microporous Mesoporous Mater., 43, 267 (2001)
  55. Kambarova GB, Sarymsakov S, Solid Fuel Chem., 42, 183 (2008)
  56. Lopez-Gonzalez JDD, Martinez-Vilchez F, Rodriguez-Reinoso F, Carbon, 18, 413 (1980)
  57. Aygun A, Yenisoy-Karakas S, Duman I, Microporous Mesoporous Mater., 66, 189 (2003)
  58. Zhang TY, Walawender WP, Fan LT, Bioresour. Technol., 101(6), 1983 (2010)
  59. Tadda MA, Ahsan A, Shitu A, ElSergany M, Arunkumar T, Jose B, Razzaque MA, Daud NNN, J. Adv. Civ. Eng. Pract. Res., 2(1), 7 (2016)
  60. Rangari PJ, Chavan P, Int. J. Innov. Res. Sci. Eng. Technol., 6(4), 5829 (2017)
  61. Kipling JJ, Wilson RB, Trans. Farad. Soc., 56, 557 (1960)
  62. Fedorov NF, et al., Carbon adsorbents and their industrial applications, Nauka, Мoscow (1983).
  63. Fedorov NF, Samonin VV, Russ. J. Appl. Chem., 71, 584 (1998)
  64. Shkolin AV, Fomkin AA, Sinitsyn VA, Colloid J., 70, 849 (2008)
  65. Sychev VV, et al., Termodinamicheskie svoistva metana (Thermodynamic properties of methane). Izdatelstvo Standartov, Moscow (in Russian) (1979).
  66. Feigin LA, Svergun DI, Structure analysis by small-angle xray and neutron scattering, Plenum Press, New York and London (1989).
  67. Glatter O, Kratky O, Small-angle x-ray scattering, Academic Press, London (1982).
  68. Shiryaev AA, Voloshchuk AM, Volkov VV, Averin AA, Artamonova SD, J. Phys: Conf. Series, 848, 012009 (2017)
  69. Guinier A, Ann. Phys., 11, 161 (1939)
  70. Men’shchikov IE, Fomkin AA, Tsivadze AY, Shkolin AV, Strizhenov EM, Pulin AL, Prot. Met. Phys. Chem. Surf., 51, 493 (2015)
  71. Fomkin AA, Shkolin AV, Men’shchikov IE, Pulin L, Pribylov AA, Smirnov IA, J. Meas. Techn., 58, 1387 (2016)
  72. Pribylov AA, Serpinskii VV, Kalashnikov SM, Zeolites, 11, 846 (1991)
  73. Men’shchikov IE, Fomkin AA, Arabei AB, Shkolin AV, Strizhenov EM, Prot. Met. Phys. Chem. Surf., 52, 575 (2016)
  74. Rahman KA, Loh WS, Ng KS, Procedia Eng., 56, 118 (2013)
  75. Barrett EP, Joyner LG, Halenda PH, J. Am. Chem. Soc., 73, 373 (1951)
  76. Rutman AM, Skakov YA, Sov. Phys. Cryst., 34, 338 (1989)
  77. Fujimoto H, Carbon, 41, 1585 (2003)
  78. Dubinin MM, Plavnik GM, Carbon, 6, 183 (1968)
  79. Rodriguez-Reinoso F, Almansa C, Molina-Sabio M, J. Phys. Chem. B, 109(43), 20227 (2005)