화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.2, 292-305, February, 2021
Effects of catalysts on structural and adsorptive properties of iron oxide-silica nanocomposites
E-mail:,
Iron oxide-silica nanocomposites were prepared by sol-gel method using ammonia (NH3), acetic acid (CH3COOH) and hydrochloric acid (HCl) catalysts to generate different pH values for the reaction conditions. As starting precursors, for the silica, respectively, for the iron oxide, tetraethylorthosilicate (TEOS) and iron-III-acetylacetonate were used. The physico-chemical characterization of the materials revealed that the sample obtained with HCl catalyst displays the largest surface area (300m2/g), the most compact network structure, highest surface roughness, biggest crystallite size (14 nm), magnetization (7 emu/g) and superparamagnetic behavior. These materials were tested for adsorption of Cr6+ and Zn2+ from aqueous solution. Sample M-HCl presented the highest surface area and was further used for adsorption of metal ions. Kinetic, thermodynamic and equilibrium adsorption measurements studies were made for Cr6+ and Zn2+. To establish the material behavior from a thermodynamic point of view, temperature and contact time of adsorption process, activation energy, free energy, of standard enthalpy and entropy were calculated. The kinetic behavior was modelled by pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models and the adsorption characteristics were determined by modelling the experimental data with Langmuir, Freundlich and Sips isotherms.
  1. Tchounwou PB, et al., Clinical and Environmental Toxicology. Experientia Supplementum, Springer, Basel (2012).
  2. Bianchi V, Zantedeschi A, Montaldi A, Majone F, Toxicol. Lett., 23, 51 (1984)
  3. Chen SH, Yue QY, Gao BY, Li Q, Xu X, Chem. Eng. J., 168(2), 909 (2011)
  4. Shariati S, Khabazipour M, Safa F, J. Porous Mat., 24, 129 (2017)
  5. Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE, ACS Nano, 10, 2121 (2008)
  6. Fu F, Wang Q, J. Environ. Manage., 92, 407 (2011)
  7. Dinker MK, Kulkarni PS, J. Chem. Eng. Data, 60(9), 2521 (2015)
  8. Martin PP, Agosto MF, Bengoa JF, Fellenz NA, J. Environ. Chem. Eng., 5, 1210 (2017)
  9. Almeida JC, Cardoso CED, Tavares DS, Freitas R, Trindade T, Vale C, Pereira E, Trends Anal. Chem., 118, 277 (2019)
  10. Biswas K, Bandhoyapadhyay D, Ghosh UC, Adsorption, 13, 83 (2007)
  11. Alcala MD, Real C, Solid State Ion., 177(9-10), 955 (2006)
  12. Zhu S, Leng YC, Yan MH, Tuo XG, Yang JB, Almasy L, Tian Q, Sun GA, Zou L, Li QT, Courtois J, Zhang H, Appl. Surf. Sci., 447, 381 (2018)
  13. Wang WW, Yao JL, Mater. Lett., 64, 840 (2010)
  14. Desch RJ, Kim J, Thiel SW, Microporous Mesoporous Mater., 187, 29 (2014)
  15. Kishore PNR, Jeevanandam P, J. Alloy. Compd., 522, 51 (2012)
  16. Nicola R, Costisor O, Ciopec M, Negrea A, et al., Appl. Sci., 10, 2726 (2020)
  17. Zhang X, Cheng T, Chen C, Wang L, Deng Q, Chen G, Ye C, Mater. Res. Express, 7, 085007 (2020)
  18. Bashir M, Riaz S, Naseem S, Mater. Today: Proceedings, 2B, 5664 (2015)
  19. Ercuta A, IEEE Trans. Instrum. Meas., 69, 1643 (2020)
  20. Kuklin AI, Soloviev DV, Rogachev AV, Utrobin PK, et al., J. Phys. Conf. Ser., 291, 012013 (2011)
  21. Kuklin AI, Rogov AD, Gorshkova YE, Utrobin PK, et al.,, Phys. Part. Nucl. Lett., 8(2), 200 (2011)
  22. Kuklin AI, Islamov AK, Gordeliy VI, Neutron News, 16, 16 (2005)
  23. Nyam-Osor M, Soloviov DV, Kovalev YS, Zhigunov A, Rogachev AV, Ivankov OI, Erhan RV, Kuklin AI, J. Phys. Conf. Ser., 351(1), 012024 (2012)
  24. Soloviev AG, Solovjeva TM, Ivankov OI, Soloviov DV, Rogachev AV, Kuklin AI, J. Phys. Conf. Ser., 848(1), 012020 (2017)
  25. Scherrer P, Nachr. Ges. Wiss. Gottingen, 26, 98 (1918)
  26. Dudas Z, Fagadar-Cosma E, Len A, Romanszki L, Almasy L, Vlad-Oros B, Dascalu D, Krajnc A, Kriechbaum M, Kuncser A, Materials, 11(4), 565 (2018)
  27. Putz AM, Len A, Ianasi C, Savii C, Almasy L, Korean J. Chem. Eng., 33(3), 749 (2016)
  28. Gubanova NN, Baranchikov AY, Kopitsa GP, Almasy L, Angelov B, Yapryntsev AD, Rosta L, Ivanov VK, Ultrason. Sonochem., 24, 230 (2015)
  29. Ianasi C, Costisor O, Putz AM, Lazau R, Negrea A, Niznansky D, Sacarescu L, Savii C, Process. Appl. Ceram., 10, 265 (2016)
  30. Ercuta A, Chirita M, J. Cryst. Growth, 380, 182 (2013)
  31. Handa M, Miyamoto H, Inorg. Chim. Acta., 203, 61 (1992)
  32. Yukawa Y, Handa M, Hoshino Y, J. Solution Chem., 24(1), 19 (1995)
  33. Colomban P, Slodczyk A, Acta Phys. Pol. A, 116, 7 (2009)
  34. Diaz-Acosta I, Baker J, Cordes W, Pulay P, J. Phys. Chem. A, 105(1), 238 (2001)
  35. Jayasooriya UA, Peck JNT, Barclay JE, Hardy SM, Chumakov AI, Evans DJ, Pickett CJ, Oganesyan VS, Chem. Phys. Lett., 518, 119 (2011)
  36. Pavel I, Szeghalmi A, Moigno D, Cinta S, Kiefer W, Biopolymers, 72(1), 25 (2003)
  37. Tirrell TF, Paddock ML, Conlan AR, Smoll EJ, Nechushtai R, Jennings PA, Kim JE, Biochemistry, 48(22), 4747 (2009)
  38. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW, Pure Appl. Chem., 87, 1051 (2015)
  39. Ianasi C, Piciorus M, Nicola R, Cipec M, Negrea A, Niznansky D, Len A, Almasy L, Putz AM, Korean J. Chem. Eng., 36(5), 688 (2019)
  40. Kosmulski M, Surface charging and points of zero charge, engineering and technology, Physical Sciences, CRC Press, Boca Raton (2009).
  41. Mulani K, Daniels S, Rajdeo K, Tambe S, Chavan N, J. Polym., 2013, Article ID 798368 (2013).
  42. Ho YS, J. Hazard. Mater., 136(3), 681 (2006)
  43. Yurdakoc M, Seki Y, Karahan S, Yurdakoc K, J. Colloid Interface Sci., 286(2), 440 (2005)
  44. Zhang Y, Yu F, Cheng W, Wang J, Ma J, J. Chem., 2017, Article ID 1936829 (2017).
  45. Abraham R, Mathew S, Kurian S, Saravanakumar MP, Ealias AM, George G, Ultrason. Sonochem., 49, 175 (2018)
  46. Vijayaraghavan K, Mao J, Yun YS, Bioresour. Technol., 99(8), 2864 (2008)
  47. Dural MU, Cavas L, Papageorgiou SK, Katsaros FK, Chem. Eng. J., 168(1), 77 (2011)
  48. Duong DD, Adsorption analysis: Equilibria and kinetics, series on chemical engineering, vol. 2, Imperial College Press, London (1998).
  49. Ren ZF, Xu X, Wang X, Gao BY, Yue QY, Song W, Zhang L, Wang HT, J. Colloid Interface Sci., 468, 313 (2016)
  50. Handore K, Bhavsar S, Horne A, Chhattise P, Mohite K, Ambekar J, Pande N, Chabukswar V, J. Macromol. Sci. A, 51, 941 (2014)
  51. Chowdhury SR, Yanful EK, Pratt AR, J. Hazard. Mater., 235-236, 246 (2012)
  52. Kelly A, Knowles KM, Crystallography and crystal defects, 2nd Ed., Wiley, United Kingdom (2012).
  53. Igwe JC, Abia AA, Ecletica Quimica, 32(1), 33 (2007)
  54. Kavelin V, Fesenko O, Dubyna H, Vidal C, Klar TA, Hrelescu C, Dolgov L, Nanoscale Res. Lett., 12, 197 (2017)
  55. Mohapatra BK, Rao DVR, Z. Anorg. Allg. Chem., 372(3), 332 (1970)
  56. Windholz M, The Merck Index, 9th Ed., vol. 802, Merck & Company, Whitehouse Station, NJ, USA (1976).
  57. Ealias AM, Saravanakumar MP, J. Environ. Manage., 206, 215 (2018)
  58. Bhatt R, Sreedhar B, Padmaja P, Int. J. Biol. Macromol., 104, 1254 (2017)
  59. Gao H, Liu Y, Zeng G, Xu W, Li T, Xia W, J. Hazard. Mater., 150, 446 (2008)
  60. Burillo G, Serrano-Gomez J, Bonifacio-Martinez J, J. Mexican Chem. Soc., 57, 80 (2013)
  61. Gheju M, Balcu I, Mosoarca G, J. Hazard. Mater., 310, 270 (2016)
  62. Aliyu A, Scientific African, 3, e00069 (2019)
  63. Mnasri-Ghnimi S, Frini-Srasra N, Appl. Clay Sci., 158, 150 (2018)
  64. Renu, Agarwal M, Singh K, J. Water Reuse Desal., 7(4), 387 (2016)
  65. Ben Tahar L, Oueslati MH, Abualreish MJA, J. Colloid Interface Sci., 512, 115 (2018)
  66. Shi S, Yang J, Liang S, Li M, Gan Q, Xiao K, Hu J, Sci. Total Environ., 628-629, 499 (2018)
  67. Li Y, Zhu S, Liu Q, Chen Z, Gu J, Zhu C, Lu T, Zhang D, Ma J, Water Res., 47, 4188 (2013)
  68. Wan C, Li J, ACS Sustain. Chem. Eng., 3, 2142 (2015)
  69. Srivastava V, Sharma YC, Water Air Soil Pollut., 225, 1 (2013)
  70. Hu J, Chen GH, Lo IMC, Water Res., 39, 4528 (2005)
  71. Wang P, Lo IMC, Water Res., 43, 3727 (2009)
  72. Jiang WJ, Pelaez M, Dionysiou DD, Entezari MH, Tsoutsou D, O'Shea K, Chem. Eng. J., 222, 527 (2013)
  73. Mahato BN, Krithiga T, Mater Today: Proc., 17, 303 (2019)
  74. Ullah R, Deb BK, Mollah MYA, Defect Diffus. Forum, 353, 33 (2014)
  75. Zhang J, Lin S, Han M, Su Q, Xia L, Hui Z, Water, 12, 446 (2020)
  76. Wei J, Yang ZX, Sun Y, Wang CK, Fan JL, Kang GY, Zhang R, Dong XY, Li YF, J. Mater. Sci., 54(8), 6709 (2019)
  77. Xing M, Xie Q, Li X, Guan T, Wu D, Environ. Technol., 41(5), 658 (2020)
  78. Ahmadi A, Heidarzadeh S, Mokhtari AR, Darezereshki E, Harouni HA, J. Geochem. Explor., 147, 151 (2014)
  79. Yuan L, Liu Y, Chem. Eng., 432, 215 (2013)
  80. Matei E, Predescu AM, Coman G, Balanescu M, Sohaciu M, Predescu C, Favier L, Niculescu M, Environ. Eng. Manag. J., 15, 1019 (2016)
  81. Nyamunda BC, Chivhanga T, Guyo U, Chigondo F, J. Eng., 2019, Art. ID. 5656983 (2019).
  82. Roy A, Bhattacharya J, Chem. Eng., 211-212, 493 (2012)
  83. Ealias AM, Saravanakumar MP, Environ. Sci. Pollut. Res., 27, 2955 (2020)
  84. George G, Saravanakumar MP, Environ. Sci. Pollut. Res., 25, 30236 (2018)
  85. Zhang YJ, Ou JL, Duan ZK, Xing ZJ, Wang Y, Colloids Surf. A: Physicochem. Eng. Asp., 481, 108 (2015)
  86. Islam MA, Angove MJ, Morton DW, Environ. Nanotechnol. Monit. Manag., 12, 100267 (2019)