화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.2, 326-336, February, 2021
Synthesis of mesoporous 2-line ferrihydrite/γ-Al2O3 hybrid adsorbent for the effective adsorption of phosphate for water remediation
E-mail:
A 2-line ferrihydrite/γ-Al2O3 hybrid adsorbent (Fh/γ-Al2O3 hybrid adsorbent) precipitated on 10 wt% of γ-Al2O3 seed for the effective adsorption of phosphate in water was synthesized from wastewater containing ferric sulfate. The use of γ-Al2O3 seeds for particle initiation made it possible to prepare larger particles that would allow a liquid to flow through. The synthesized Fh/γ-Al2O3 hybrid adsorbent was characterized by X-ray diffraction, 27Al-MAS NMR, N2 adsorption/desorption, SEM analysis, and EpHL measurements. The adsorption performance of phosphate on the synthesized Fh/γ-Al2O3 hybrid adsorbent was evaluated by batch and column tests at phosphate concentration below 10 ppm, which corresponds to the actual phosphate concentration of natural systems. The adsorption mechanism suggested by the batch test was in good agreement with the Langmuir adsorption model, with a maximum adsorption capacity of 33.2mg/g. On the other hand, the experiment with the column obtained a maximum adsorption capacity of 33.6mg/g for a volumetric flow rate of 10.25 BV/min and an influent phosphate concentration of 4.75 ppm on 0.5 g of adsorbent. The Fh/γ-Al2O3 hybrid adsorbent was shown to have superior adsorption characteristics to those of other previous research in terms of cost, adsorption efficiency, contact time, maximum adsorption capacity, and desorption efficiency of 95% from the experimental condition based on the surface characterization of the adsorbent.
  1. Carta D, Casula MF, Corrias A, Falqui A, Navarra G, Pinna G, Mater. Chem. Phys., 113(1), 349 (2009)
  2. Wang X, Li W, Harrington R, Liu F, Parise JB, Feng X, Sparks DL, Environ. Sci. Technol., 47, 10322 (2013)
  3. Michel FM, Ehm L, Antao SM, Lee PL, Chupas PJ, Liu G, Strongin DR, Schoonen MAA, Phillips BL, Parise JB, Science, 316, 1726 (2007)
  4. Mendez JC, Hiemstra T, Chem. Geol., 532, 119304 (2020)
  5. Peretyazhko TS, Ralston SJ, Sutter B, Ming DW, J. Geophys. Res.-Planets, 125, 1 (2020)
  6. Namayandeh A, Kabengi N, J. Colloid Interface Sci., 540, 20 (2019)
  7. Rout K, Mohapatra M, Anand S, Dalton Trans., 41, 3302 (2012)
  8. Das S, Hendry MJ, Essilfie-Doughan J, Environ. Sci. Technol., 45, 5557 (2011)
  9. Liu Z, Lu Y, Duan X, Int. J. Environ. Anal. Chem., https://doi.org/10.1080/03067319.2020.1779246 (2020).
  10. Winstanley EH, Morris K, Abrahamsen-Mills LG, Blackham R, Shaw S, J. Hazard. Mater., 366, 98 (2019)
  11. Liang Y, Tian L, Lu Y, Peng L, Wang P, Lin J, Cheng T, Dangab Z, Shi Z, Environ. Sci.: Processes Impacts, 20, 934 (2018)
  12. Zhu J, Pigna M, Cozzolino V, Caporale AG, Violante A, Geoderma, 159, 409 (2010)
  13. Zhou S, Sato T, Otake T, Minerals, 8, 101 (2018)
  14. Hobson AJ, Stewart DI, Bray AW, Mortimer RJG, Mayes WM, Riley AI, Rogerson M, Burke IT, Sci. Total Environ., 643, 1191 (2018)
  15. Das S, Essilfie-Dughan J, Hendry MJ, Appl. Geochem., 73, 70 (2018)
  16. Kikuchi S, Kashiwabara T, Shibuya T, Takehashi Y, Geochim. Cosmochim. Acta, 251, 1 (2019)
  17. Arcibar-Orozco JA, Wallace R, Mitchell JK, Bandosz TJ, Langmuir, 31(9), 2730 (2015)
  18. Mathew T, Suzuki K, Ikuta Y, Nagai Y, Takahashi N, Shinjoh H, Angew. Chem.-Int. Edit., 50, 7381 (2011)
  19. Osawa H, Lohwacharin J, Takizawa S, Sep. Purif. Technol., 176, 184 (2017)
  20. Chiavacci LA, Dahmouche K, Silva NJO, Carlos LD, et al., J. Non-Cryst. Solids, 345, 585 (2004)
  21. Wallace AR, Su C, Sun W, Environ. Eng. Sci., 36, 634 (2019)
  22. Li G, Chen D, Zhao W, Zhang X, J. Environ. Chem. Eng., 3, 515 (2015)
  23. Yang SJ, Zhao YX, Chen RZ, Feng CP, Zhang ZY, Lei ZF, Yang YN, J. Colloid Interface Sci., 396, 197 (2013)
  24. Lai L, Xie Q, Chi LN, Gu W, Wu DY, J. Colloid Interface Sci., 465, 76 (2016)
  25. Mitrogiannis D, Psychoyou M, Baziotis I, Inglezakis VJ, Koukouzas N, Tsoukalas N, Palles D, Kamitsos E, Oikonomou G, Markou G, Chem. Eng. J., 320, 510 (2017)
  26. Li F, Wu W, Li R, Fu X, Appl. Clay Sci., 132, 343 (2016)
  27. Ren Z, Shao L, Zhang G, Water Air Soil Pollut., 223, 4221 (2012)
  28. Huang X, Foster GD, Honeychuck RV, Schreifels JA, Langmuir, 25(8), 4450 (2009)
  29. Chmielewska E, Hodossyova R, Bujdos M, Pol. J. Environ. Stud., 5, 1307 (2013)
  30. Kang BJ, J. Adv. Eng. Technol., 4, 475 (2011)
  31. Fyte CA, Gobbl GC, Hartmen JS, Kllnowski J, Thomas JM, J. Phys. Chem., 86, 1247 (1982)
  32. Komarneni S, Roy R, Roy DM, Cem. Concr. Res., 15, 723 (1985)
  33. Lopes TR, Goncalves GR, de Barcellos E, Schettino MA, Cunha AG, Emmerich FG, Freitas JCC, Carbon, 93, 751 (2015)
  34. Muller D, Gessner W, Behrens HJ, Scheler G, Chem. Phys. Lett., 79, 59 (1981)
  35. Nazar LF, Klein LC, Commun. Am. Ceram. Soc., 71, C-85 (1988)
  36. Samain L, Jaworski A, Eden M, Ladd DM, Seo DK, J. Solid State Chem., 217, 1 (2014)
  37. Kumar PS, Prot T, Korving L, Keesman KJ, Dugulan I, van Loosdrecht MCM, Witkamp GJ, Chem. Eng. J., 326, 231 (2017)
  38. Regalbuto JR, Catalyst preparation science and engineering, CRC Press, New York (2007).
  39. Richards R, Surface and nanomolecular catalysis, CRC Press, New York (2006).
  40. Ghosh A, Paul S, Bhattacharys S, Sasikumar P, Biswas K, Ghosh UC, Environ. Sci. Pollut. Res., 26, 4618 (2019)
  41. Langmuir I, J. Am. Chem. Soc., 40, 1361 (1918)
  42. Freundlich HMF, Z. Phys. Chem-Frankf., 57A, 385 (1906)