화학공학소재연구정보센터
Macromolecular Research, Vol.29, No.1, 62-74, January, 2021
Direct Electrochemistry and Photoelectro-Catalysis on Oxygen Reduction Reaction of Titanium Dioxide Nano-Tubes Sensitized by Meso-Tetrakis (4-carboxyphenyl) Porphine with Laccase Accommodation
E-mail:
TiO2 functionalized by meso-tetrakis (4-carboxyphenyl) porphine was proposed as an enzyme supporter. Laccase molecules were firmly anchored onto the interface of the nanocomplex via the synergy of multiple mutual interactions, including covalent bonding and the adjacent coordination between the enzyme matrix and protein molecules. Morphology, structural features, surface chemistry, and physiochemical properties of the nanocomposite with Laccase tethering were characterized and explored with a variety of techniques such as: microscopy, spectrometry, electrochemistry, etc. The electro-chemical behavior and photoelectrocatalytic function on oxygen reduction reactions were also evaluated. Results from the investigations indicated that interactions between components of the protein carrier and incorporated Laccase molecules would result in partial orderly distribution of Laccase onto the surface of the nanocomplex with an augmentation in the content of hydrophobic α-helix. Such interactions would alter the original mechanism of the electron shuttle in both native Laccase and the Laccase cofactor in that the Laccase T1 site would play the role of inner electron relay. The electro-active site in TiO2 acted as the primary electron acceptor and would dominate the dynamics in charge of transportation. The adjoining ligation between the Lac and porphine derivative would improve the visible irradiation efficiency and catalytic efficacy in the electro-reduction/photo-electrochemical reduction of dissolved O2 to some extent.
  1. Ahmed MA, Abou-Gamra ZM, Medien HAA, Hamza MA, J. Photochem. Photobiol. B-Biol., 176, 25 (2017)
  2. Niu YY, Luo GL, Xie H, Zhuang YJ, Wu XQ, Li GJ, Sun W, Microchim. Acta, 186, 826 (2019)
  3. Nasr M, Eid C, Habchi R, Miele P, Bechelany M, ChemSusChem., 11, 3023 (2018)
  4. Ge MZ, Cao CY, Huang JY, Li SH, Zhang SN, Deng S, Lai YK, Nanotechnol. Rev., 5, 75 (2016)
  5. Kim H, Manivannan R, Heo G, Ryu JW, Son YA, Res. Chem. Intermed., 45, 3655 (2019)
  6. Zhang W, Wang C, Liu X, Li J, J. Mater. Res., 32, 2773 (2017)
  7. Zhao YT, Sheng YF, Chinese J. Mater. Rev., 31, 138 (2017)
  8. Wu L, Wu S, Xu Z, Qiu Y, Li S, Xu H, Biosens. Bioelectron., 80, 59 (2016)
  9. Cheng HP, Hu MC, Zhai QG, Li SN, Jiang YC, Chem. Eng. J., 347, 703 (2018)
  10. Brune A, Jeong G, Liddell PA, Sotomura T, Moore TA, Moore AL, Gust D, Langmuir, 20, 8366 (2014)
  11. Hernandez-Majalca BC, Melendez-Zaragoza MJ, Salinas-Gutierrez JM, Lopez-Ortiz A, Collins-Martinez V, Int. J. Hydrog. Energy, 44, 12381 (2018)
  12. Zheng W, Zho HM, Zheng YF, Wang N, Chem. Phys. Lett., 457(4-6), 381 (2008)
  13. Pita M, Shleev S, Ruzgas T, Fernandez VM, Yaropolov AI, Gorton L, Electrochem. Commun., 8, 747 (2006)
  14. Shleev S, Kasmi AE, Ruzgas T, Gorton L, Electrochem. Commun., 6, 934 (2004)
  15. Shu JN, Chin D, University of Science and Technology of China (2018) (in Chinese).
  16. (a) Yang Y, et al., Chin. J. Inorg. Chem., 32, 2117 (2016) (in Chinese). (b) Zhang M, et al., Chem. Phys. Lett., 738, 136904 (2020). (c) Wang F, et al., Int. J. Electrochem. Sci., 15, 6645 (2020).
  17. Palanisamy S, Karuppiah C, Chen SM, Emmanuel R, Muthukrishnan P, Prakash P, J. Sens. Actuat. B-Chem., 202, 177 (2014)
  18. Wang MZ, Sheng QL, Zhang DW, He YP, Zheng JB, Bioelectrochemistry, 86, 46 (2016)
  19. Tsujimura S, Kamitaka Y, Kano K, Fuel Cells, 7, 463 (2007)
  20. Liu Y, Qu XH, Guo HW, Chen HJ, Liu BF, Dong SJ, Biosens. Bioelectron., 21, 2195 (2006)
  21. Qiu HJ, Xu CX, Huang XR, Ding Y, Qu YB, Gao PJ, J. Phys. Chem. C, 113, 2521 (2009)
  22. Wang QH, Chin D, Preparation of Throwable Electrode Based on ITO and Its application in Biomolecule Detection, Nantong University (2016) (in Chinese).
  23. Zeng H, Zhang YH, Ma TM, Huo WS, J. Inorg. Organomet. Polym., 28, 2730 (2018)
  24. Sun T, Chin D, Synthesis, Liaoning Normal University (2013) (in Chinese).
  25. Zangeneh H, Zinatizadeh AA, Zinadini S, Feyzi M, Rafiee E, Bahnemann DW, J. Hazard. Mater., 369, 384 (2019)
  26. Lu F, Ding XF, Wang H, Liu YL, Kang HY, Dai C, Yang XL, Gao Y, Yang C, Li FH, Gong YL, Chin. J. Electroplat. Finishing, 37, 1 (2015)
  27. Zeng H, Huo WS, Wang F, Ma TM, Macromol. Res., 27(10), 963 (2019)
  28. Palmore GTR, Kim HH, J. Electroanal. Chem., 464(1), 110 (1999)
  29. Wang SC, Cai JS, Mao JJ, Li SH, Shen JL, Gao SW, Huang JY, Wang XQ, Parkin IP, Lai YK, J. Appl. Surf. Sci., 467, 45 (2019)
  30. Mao H, Cai BF, Zhao B, Wang ZW, Chin. J. Appl. Chem., 26, 1332 (2009)
  31. Klis M, Karbarz M, Stojek Z, Rogalski J, Bilewicz R, J. Phys. Chem. B, 113(17), 6062 (2009)
  32. Qiu HJ, Xu CX, Huang XR, Ding Y, Qu YB, Gao PJ, J. Phys. Chem. C, 112, 14781 (2008)
  33. Zelechowska K, Stolarczyk K, Lyp D, Rogalski J, Roberts KP, Bilewicz R, Biernat JF, Biocybern, Biomed. Eng., 33, 235 (2013)
  34. Rahman MA, Noh HB, Shim YB, Anal. Chem., 80, 8020 (2008)
  35. Cosnier S, Gross AJ, Le Goff A, Holzinger M, J. Power Sources, 325, 252 (2016)
  36. Willner I, Helegshabtai V, Blonder R, Katz E, Tao GL, J. Am. Chem. Soc., 118(42), 10321 (1996)
  37. Ramasamy RP, Luckarift HR, Ivnitski DM, Atanassov PB, Johnson GR, Chem. Commun., 46, 6045 (2010)
  38. Zhang Y, Zeng GM, Tang L, Huang DL, Jiang XY, Chen YN, Biosens. Bioelectron., 22, 2121 (2007)
  39. Jiang DS, Long SY, Huang J, Xiao HY, Zhou JY, Biochem. Eng. J., 25, 15 (2005)