화학공학소재연구정보센터
Macromolecular Research, Vol.29, No.1, 82-88, January, 2021
Production of Uniform Microspheres Using a Simple Microfluidic Device with Silica Capillary
E-mail:
A microfluidic device is fabricated by using silica capillary with 50 μm inner diameter and 150 μm outer diameter. This device is simple to fabricate by pouring the silica capillary with polydimethylsiloxane (PDMS), then removing the capillary after curing, to form the entire micrometer regime. This device can easily regulate the size of the oil-in-water (O/W) emulsion droplets by changing the flow rate of the continuous phase. The generated emulsion droplets can be reduced to a size of about 75 μm, and produced in uniform size with a coefficient of variation of 2.6%. The polymeric microbeads using organic solvent were produced by mixing hydrophobic PDMS with PDMS-poly(ethylene glycol) to provide hydrophilicity. In addition, it was confirmed that this device can produce uniform emulsion droplets, even in the changed T-junction form. We believe that the microfluidic device with silica capillary can be used as a potential technique for the encapsulation and delivery of various therapeutic drugs.
  1. Giuffrida MC, Spoto G, iosens. Bioelectron., 90, 174 (2017)
  2. Hbaaj L, Gmuattn A, Trends Analyt. Chem., 59, 9 (2014)
  3. Zheng B, Gerdts CJ, Ismagilov RF, Curr. Opin. Struct. Biol., 15, 548 (2005)
  4. Shum HC, Abate AR, Lee D, Studart AR, Wang BG, Chen CH, Thiele J, Shah RK, Krummel A, Weitz DA, Macromol. Rapid Commun., 31(2), 108 (2010)
  5. Jiang KQ, Sposito A, Liu JK, Raghavan SR, Devoe DL, Polymer, 53(24), 5469 (2012)
  6. Gokmen MT, Van Camp W, Colver PJ, Bon SAF, Du Prez FE, Macromolecules, 42(23), 9289 (2009)
  7. Zhao CX, Adv. Drug Deliv. Rev., 65, 1420 (2013)
  8. Kim DY, Jin SH, Jeong SG, Lee B, Kang KK, Lee CS, Sci. Rep., 8, 8525 (2018)
  9. Romanov V, Samuel R, Chaharlang M, Jafek AR, Frost A, Gale BK, Anal. Chem., 90, 10450 (2018)
  10. Urbanski P, Thies W, Rhodes C, Amarasinghe S, Thorsen T, Lab Chip, 6, 96 (2006)
  11. Martino C, Berger S, Wootton RCR, deMello AJ, Lab Chip, 14, 4178 (2014)
  12. Ji Q, Zhang JM, Liu Y, Li X, Lv P, Jin D, Duan H, Sci. Rep., 8, 4791 (2018)
  13. Gong H, Bickham BP, Woolley AT, Nordin GP, Lab Chip, 17, 2899 (2017)
  14. Han M, Lee W, Lee SK, Lee SS, Sens. Actuators A-Phys., 111, 14 (2004)
  15. Hasan R, Peri SSS, Sabane VP, Mansur N, Gao JX, Nguyen KT, Weidanz JA, Iqbal SM, Abhyankar VV, Biomed. Phys. Eng. Express, 4, 025015 (2018)
  16. Allahyari Z, Gholizadeh S, Chung HH, Delgadillo LF, Gaborski TR, ACS Biomater. Sci. Eng., 6, 959 (2020)
  17. Patabadige DEW, Mickleburgh T, Ferris L, Brummer G, Culbertson AH, Culbertson CT, Electrophoresis, 37(10), 1337 (2016)
  18. Gholizadeh S, Allahyari Z, Carter R, Delgadillo LF, Blaquiere M, Morin FN, Marchi N, Gaborski TR, Adv. Mater. Technol., 2000474 (2020).
  19. Nabavi SA, Vladisavljevic GT, Gu S, Ekanem EE, Chem. Eng. Sci., 130, 183 (2015)
  20. Nurumbetov G, Ballard N, Bon SAF, Polym. Chem., 3, 1043 (2012)
  21. Wang J, Chen W, Sun J, Liu C, Yin Q, Zhang L, Xianyu Y, Shi X, Hu G, Jiang X, Lab Chip, 14, 1673 (2014)
  22. Mei L, Jin M, Xie X, Yan Z, Wang X, Zhou G, Berg A, Shui L, Lab Chip, 18, 2806 (2018)
  23. Che Z, Wong TN, Nguyen NT, Microfluid. Nanofluid., 21, 8 (2017)
  24. Guo P, Chen G, Shu H, Li P, Yu P, Chang C, Wang Y, Fu Q, Anal. Methods, 11, 3687 (2019)
  25. Hebert ML, Shah DS, Blake P, Servoss SL, Coatings, 3, 98 (2013)
  26. Andhariya JV, Burgess DJ, Expert Opin. Drug Del., 13, 593 (2016)
  27. Wang X, Wenk E, Zhang X, Meinel L, Vunjak-Novakovic G, Kaplan DL, J. Control. Release, 134, 81 (2009)
  28. Lewis AL, Adams C, Busby W, Jones SA, Wolfenden LC, Leppard SW, Palmer RR, Small S, J. Mater. Sci. Mater. Med., 17, 1193 (2006)
  29. Igartua M, Hernandez RM, Esquisabel A, Gascon AR, Calvo MB, Pedraz JL, J. Control. Release, 56, 63 (1998)
  30. Olanrewaju A, Beaugrand M, Yafia M, Juncker D, Lab Chip, 18, 2323 (2018)
  31. Safavieh R, Tamayol A, Juncker D, Microfluid. Nanofluid., 18, 357 (2015)
  32. Shim HW, Lee JH, Hwang TS, Rhee YW, Bae YM, Choi JS, Han J, Lee CS, Biosens. Bioelectron., 22, 3188 (2007)
  33. Maria MS, RAkesh PE, Chandra TS, Sen AK, Sci. Rep., 7, 43457 (2017)
  34. Gervais L, Delaamrche E, Lab Chip, 9, 3330 (2009)
  35. Latthe SS, Terashima C, Nakata K, Sakai M, Fujishima A, J. Mater. Chem. A, 2, 5548 (2014)
  36. Zhang J, Tian H, Yao Z, Hao P, Jiang N, Exp. Fluids, 56, 179 (2015)
  37. Yang X, Liu X, Lu Y, Song J, Hunag S, Zhou S, Jin Z, Xu W, J. Phys. Chem. C, 120, 7233 (2016)
  38. Suhas DP, Aminabhavi TM, Raghu AV, Appl. Clay Sci., 101, 419 (2014)
  39. Suhas DP, Aminabhavi TM, Jeong HM, Raghu AV, RSC Adv., 5, 100984 (2015)
  40. Suhas DP, Aminabhavi TM, Raghu AV, Polym. Eng. Sci., 54(8), 1774 (2014)
  41. Fatona A, Chen Y, Reid M, Brook MA, Moarn-Mirabal JM, Lab Chip, 15, 4322 (2015)
  42. Gokaltun A, Kang YBA, Yarmush ML, Usta OB, Asatekin A, Sci. Rep., 9, 7377 (2019)
  43. Kamperman T, Loo B, Gurian M, Henke S, Karperien M, Leijten J, Lab Chip, 19, 1977 (2019)
  44. Marmiroli B, Grenci G, Cacho-Nerin F, Sartori B, Ferrari E, Laggner P, Businarob L, Amenitsch H, Lab Chip, 9, 2063 (2009)
  45. Utada AS, Fernandez-Nieves A, Stone HA, Weitz DA, Phys. Rev. Lett., 99, 094502 (2007)
  46. Utada AS, Chu LY, Fernandez-Nieves A, Link DR, Holtze C, Weitz DA, MRS Bull., 32, 702 (2007)
  47. Pal R, J. Colloid Interface Sci., 225(2), 359 (2000)
  48. Wang K, Qin K, Lu YC, Luo GS, Wang T, AIChE J., 61(5), 1722 (2015)