Journal of Industrial and Engineering Chemistry, Vol.93, 394-406, January, 2021
Exergy analysis and multi-objective optimisation for energy system: a case study of a separation process in ethylene manufacturing
E-mail:,
In chemical industry, most processes face the challenge of high energy consumption. The approach presented in this study can reduce the energy footprint and increase efficiency. The energy system of a separation process in ethylene manufacturing is used to demonstrate the effectiveness of the approach. The chilling train system of the separation process in a typical ethylene plant consumes most cooling and provides appropriate feed for distillation columns. The steady state simulation of system was presented and the simulation results were proved accurate. The conventional exergy analysis identifies that Dephlegmator No.1 (a heat exchange and mass transfer device) has the highest exergy destruction (1401.28 kW). Based on advanced exergy analysis, Dephlegmator No.1 has the highest rate of avoidable exergy destruction (89.04 %). Finally, a multi-objective optimisation aiming to maximise system exergy efficiency and to minimise operational cost was performed and the Pareto frontier was obtained. The multi-objective optimized exergy efficiency is 79.53 % (improved by 0.61 %) and the operational cost is 0.02031 yuan/kg (saved by 11.19 %). This study will guide future research to reduce energy consumption in process manufacturing.
Keywords:Ethylene manufacturing;Separation process;Steady state simulation;Exergy analysis;Process optimisation
- Chen Y, Han Y, Zhu Q, Appl. Therm. Eng., 119, 156 (2017)
- Frangopoulos CA, Energy, 164, 1011 (2018)
- Zhao L, You FQ, Energy, 182, 559 (2019)
- Shen FF, Wang XQ, Huang LX, Ye ZC, Qian F, Ind. Eng. Chem. Res., 58(4), 1686 (2019)
- Shen F, Zhao L, Du W, Zhong W, Qian F, Appl. Energy, 259, 114199 (2020)
- Stone & Webster International Projects Crop, Revamping of Separation Section of Ethylene Plant - Process Design Package, Vol. 1 (2000).
- Zhang JA, Wen YQ, Xu QA, Ind. Eng. Chem. Res., 49(12), 5786 (2010)
- Xu CX, Zhang J, Dinh H, Xu Q, Ind. Eng. Chem. Res., 56(28), 7984 (2017)
- Lucadamo GA, Bernhard DP, Rowles HC, Gas Sep. Purif., 1(2), 94 (1987)
- Vane LM, Alvarez FR, Mairal AP, Baker RW, Ind. Eng. Chem. Res., 43(1), 173 (2004)
- Wang J, Smith R, Chem. Eng. Res. Des., 83(A9), 1133 (2005)
- Casas Y, Arteaga LE, Morales M, Rosa E, Peralta LM, Dewulf J, Chem. Eng. J., 162(3), 1057 (2010)
- Olaleye AK, Wang MH, Kelsall G, Fuel, 151, 57 (2015)
- Olaleye AK, Wang M, Int. J. Greenh. Gas Control, 64, 246 (2017)
- Lin YJ, Rochelle GT, Chem. Eng. J., 283, 1033 (2016)
- Bechtel S, Vidakovic-Koch T, Sundmacher K, Chem. Eng. J., 346, 535 (2018)
- Elhelw M, Al Dahma KS, Attia AH, Appl. Therm. Eng., 150, 285 (2019)
- Yan C, Lv L, Wei S, Eslamimanesh A, Shen W, Appl. Therm. Eng., 154, 637 (2019)
- Malik A, Qureshi SR, Abbas N, Zaidi AA, Sustain. Energy Technol. Assess., 37, 100596 (2020)
- Wang B, Pamminger M, Wallner T, Appl. Energy, 254, 113645 (2019)
- Ma B, Yao A, Yao C, Wu T, Wang B, Gao J, Chen C, Appl. Energy, 261, 114483 (2020)
- Fabrega FM, Rossi JS, d'Angelo JVH, Energy, 35(3), 1224 (2010)
- Ghannadzadeh A, Sadeqzadeh M, J. Clean Prod., 129, 508 (2016)
- Jahromi FS, Beheshti M, Rajabi RF, Energy, 164, 1114 (2018)
- Yuan B, Zhang Y, Du W, Wang M, Qian F, Appl. Energy, 254, 113583 (2019)
- Ghorbani B, Shirmohammadi R, Mehrpooya M, Appl. Therm. Eng., 132, 283 (2018)
- Joybari MM, Haghighat F, Energy Conv. Manag., 126, 799 (2016)
- Wu D, Hu B, Wang RZ, Renew. Energy, 116, 775 (2018)
- Sun ZL, Wang QF, Xie ZY, Liu SC, Su DD, Cui Q, Energy, 170, 1170 (2019)
- Chen W, Li ZL, Sun Q, Zhang B, Energy Conv. Manag., 191, 55 (2019)
- Razmi A, Soltani M, Torabi M, Energy Conv. Manag., 195, 1199 (2019)
- Ahamed JU, Saidur R, Masjuki HH, Renew. Sust. Energ. Rev., 15(3), 1593 (2011)
- Morosuk T, Tsatsaronis G, Energy, 33(6), 890 (2008)
- Wei ZQ, Zhang BJ, Wu SY, Chen QL, Tsatsaronis G, Energy, 42(1), 424 (2012)
- Vuckovic GD, Stojiljkovic MM, Vukic MV, Stefanovic GM, Dedeic EM, Energy Conv. Manag., 85, 655 (2014)
- Mehrpooya M, Lazenizade R, Sadaghiani MS, Parishani H, Energy Conv. Manag., 123, 523 (2016)
- Penkuhn M, Tsatsaronis G, Energy, 137, 854 (2017)
- Mehdizadeh-Fard M, Pourfayaz F, Mehrpooya M, Kasaeian A, Appl. Therm. Eng., 137, 341 (2018)
- Mohammadi Z, Fallah M, Mahmoudi SMS, Energy, 178, 631 (2019)
- Gholamian E, Hanafizadeh P, Ahmadi P, Appl. Therm. Eng., 137, 689 (2018)
- Yu M, Chen Z, Yao D, Zhao F, Pan X, Liu X, Cui P, Zhu Z, Wang Y, Energy Conv. Manag., 221, 113162 (2020)
- Cui PZ, Yu MX, Liu ZQ, Zhu ZY, Yang S, Energy Conv. Manag., 184, 249 (2019)
- Kaviri AG, Jaafar MNM, Lazim TM, Energy Conv. Manag., 58, 94 (2012)
- Di Somma M, Yan B, Bianco N, Graditi G, Luh PB, Mongibello L, Naso V, Appl. Energy, 204, 1299 (2017)
- Qin C, Yan Q, He G, Energy, 188, 116044 (2019)
- Aspen Technology, Inc., ASPEN PLUS1 Aspen Plus User Guide Version 8.4, (2013).
- Szargut J, Morris DR, Steward FR, Exergy analysis of thermal, chemical, and metallurgical processes, Hemisphere Publishing, New York, NY, United States, 1987.
- Ghannadzadeh A, Thery-Hetreux R, Baudouin O, Baudet P, Floquet P, Joulia X, Energy, 44(1), 38 (2012)
- Ahrendts J, Energy, 5(8-9), 666 (1980)
- Lazzaretto A, Tsatsaronis G, Energy, 91(8-9), 1257 (2006)
- Tsatsaronis G, Thermodynamic Optimization of Complex Energy Systems, Springer, Netherlands, Dordrecht, pp.93 1999.
- Yang YP, Wang LG, Dong CQ, Xu G, Morosuk T, Tsatsaronis G, Appl. Energy, 112, 1087 (2013)
- Morosuk T, Tsatsaronis G, Energy, 33(6), 890 (2008)
- Fard MM, Pourfayaz F, J. Clean Prod., 206, 670 (2019)
- Mehrpooya M, Lazenizade R, Sadaghiani MS, Parishani H, Energy Conv. Manag., 123, 523 (2016)
- del Valle Y, Venayagamoorthy GK, Mohagheghi S, Hernandez JC, Harley RG, IEEE Trans. Evol. Comput., 12(2), 171 (2008)
- Sayyaadi H, Nejatolahi M, Int. J. Refrig., 34(1), 243 (2011)