화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.94, 173-179, February, 2021
Size-tailored microwave absorption and reaction activity of Co3O4 nanocatalysts
E-mail:
Microwave (MW)-assisted heterogeneous catalytic chemical reactions have opened advanced routines over the conventional methodology. MW absorption ability of catalyst governed by its particle size is the foremost important factor to be considered before designing catalysts for such MW-based chemistry. Despite considerable interest in applying metallic-based catalysts for MW-assisted reactions, the influences of particle size on catalyst’s MW absorption ability and its resultant activity remain elusive. Here, we report an effective approach to tailor the MW absorption ability of Co3O4 catalyst via controlling its particle size during the crystal growth. A developed theoretical model verified that a capping agent could regulate Co3O4 particle size effectively. For the unsupported Co3O4 catalysts, smaller particle size possessed higher MW absorption capacity and thereby delivered higher activity for MW-assisted bi-reforming of methane. High conversion of 63% CH4 and a syngas ratio (H2/CO) of 2.2 was achieved with the smallest Co3O4 particles, at 20 nm. In contrast, the supported Co3O4 samples required larger particles to ensure adequate exposure to the incident MW, which is partially covered by MW-inert support. The results disclose that by tailoring particles size appropriately, metallic-based catalysts can be optimised for MW-based chemical reactions.
  1. Garcia-Banos B, Reinosa JJ, Penaranda-Foix FL, Fernandez JF, Catala-Civera JM, Sci. Rep, 9, 10809 (2019)
  2. Nguyen HM, Sunarso J, Li C, Pham GH, Phan C, Liu S, Appl. Catal. A: Gen., 59, 117620 (2020)
  3. Yoshikawa N, J. Microwave. Power. EE, 44, 4 (2010)
  4. Liu L, Duan Y, Guo J, Chen L, Liu S, Physica B Condens., 406, 2261 (2011)
  5. Crane CA, Pantoya ML, Weeks BL, Saed M, Powder Technol., 256, 113 (2014)
  6. Cai XD, Jiang XJ, Xie W, Mu JY, Yin DF, Def. Technol., 14, 477 (2018)
  7. Nguyen HM, Pham GH, Ran R, Vagnoni R, Pareek V, Liu S, Catal. Sci. Technol., 8, 5315 (2018)
  8. Nguyen HM, Pham GH, Tade M, Phan C, Vagnoni R, Liu S, Energy Fuels (2020).
  9. Dudley GB, Richert R, Stiegman A, Chem. Sci., 6, 2144 (2015)
  10. Pour AN, Housaindokht MR, Babakhani EG, Irani M, Shahri SMK, J. Ind. Eng. Chem., 17(3), 596 (2011)
  11. Alamgholiloo H, Rostamnia S, Pesyan NN, Colloids Surf. A: Physicochem. Eng. Asp., 602, 125130 (2020)
  12. Ly M, Mekonnen TH, J. Ind. Eng. Chem., 83, 409 (2020)
  13. Chen LY, Xu JQ, Choi H, Konishi H, Jin S, Li XC, Nat. Commun., 5, 3879 (2014)
  14. Ahadi A, Alamgholiloo H, Rostamnia S, Liu X, Shokouhimehr M, Alonso DA, Luque R, ChemCatChem, 11, 4803 (2019)
  15. Memar A, Phan CM, Tade MO, Appl. Surf. Sci., 305, 760 (2014)
  16. Memar A, Phan CM, Tade MO, Int. J. Hydrog. Energy, 37(22), 16835 (2012)
  17. Phan CM, Nguyen HM, J. Phys. Chem. A, 121(17), 3213 (2017)
  18. Sharma S, Garg N, Ramanujachary KV, Lofland SE, Ganguli AK, Cryst. Growth Des., 12, 4202 (2012)
  19. Bulavchenko AI, Beketova DI, Podlipskaya TY, Demidova MG, Cryst. Growth Des., 14, 1142 (2014)
  20. Anandhababu G, Ravi G, Nano-Struct. Nano-Objects, 15, 1 (2018)
  21. He P, Hou ZL, Zhang KL, Li J, Yin K, Feng S, Bi S, J. Mater. Sci., 52(13), 8258 (2017)
  22. Gawali SR, Gandhi AC, Gaikwad SS, Pant J, Chan TS, Cheng CL, Ma YR, Wu SY, Sci. Rep, 8, 249 (2018)
  23. Medina JC, Rodil SE, Zanella R, Catal. Sci. Technol, 10, 853 (2020)
  24. Kumar PS, Korving L, Keesman KJ, van Loosdrecht MCM, Witkamp GJ, Chem. Eng. J., 358, 160 (2019)
  25. Lee WJ, Bera S, Kim CM, Koh EK, Hong WP, Oh SJ, Cho E, Kwon SH, NPG Asia Mater., 12, 40 (2020)
  26. Ozkan E, Cop P, Benfer F, Hofmann A, Votsmeier M, Guerra JM, Giar M, Heiliger C, Over H, Smarsly BM, J. Phys. Chem. C, 124, 8736 (2020)
  27. An YJ, Nishida K, Yamamoto T, Ueda S, Deguchi T, Electronics and Communications in Japan, 93, 18 (2010).
  28. Xiao T, Yang HL, Zhang GP, J. Appl. Phys., 110, 024902 (2011)
  29. Lu B, Dong XL, Huang H, Zhang XF, Zhu XG, Lei JP, Sun JP, J. Magn. Magn. Mater., 320, 1106 (2008)
  30. Wang DJ, Zhang JY, He P, Hou ZL, Ceram. Int., 45, 23043 (2019)
  31. Tang M, Zhang JY, Bi S, Hou ZL, Shao XH, Zhan KT, Cao MS, ACS Appl. Mater. Interfaces, 11, 33285 (2019)
  32. Zhang S, Cao Q, Zhang M, Cai L, Yan Q, Int. J. Appl.Ceram. Technol., 11, 762 (2014)
  33. Ameer S, Gul IH, PLoS One, 11, e01535 (2016)
  34. Rousseau R, Glezakou VA, Selloni A, Nat. Rev. Mater, 5, 460 (2020)
  35. Zhu BY, Miao P, Kong J, Zhang XL, Wang GY, Chen KJ, Cryst. Growth Des., 19, 1518 (2019)
  36. Kishimoto F, Matsuhisa M, Imai T, Mochizuki D, Tsubaki S, Maitani MM, Suzuki E, Wada Y, J. Phys. Chem. Lett., 10, 3390 (2019)
  37. Duan Y, Liu S, Wen B, Guan H, Wang G, J. Compos. Mater., 40, 1841 (2006)
  38. Zhao B, Fan B, Xie Y, Zhang R, Optik, 126, 4597 (2015)
  39. Alawi NM, Sunarso J, Pham GH, Barifcani A, Nguyen MH, Liu S, J. Ind. Eng. Chem., 85, 118 (2020)