Journal of Industrial and Engineering Chemistry, Vol.94, 343-351, February, 2021
Promoting bone regeneration by 3D-printed poly(glycolic acid)/hydroxyapatite composite scaffolds
E-mail:
Hydroxyapatite (HAp) is a major bone graft component for hard tissue regeneration. However, sintered HAp has poor formability and mechanical properties. Porous 3D scaffolds for bone tissue regeneration were printed with computer-aided modeling using poly(glycolic acid) (PGA) and HAp. PGA scaffolds containing HAp nanoparticles were fabricated with a 400 μm pore size. PGA/HAp scaffolds containing 12.5 wt% HAp showed considerable compressive strength, osteogenesis, mineralization, and biodegradation. In in vivo animal experiments, the PGA/HAp group exhibited 47% bone regeneration, with superior bone mineral density 8 weeks after surgery. 3D-printed PGA/HAp scaffolds could provide a feasible option to promote patient-specific bone regeneration.
- Langer R, Vacanti JP, Science, 260, 920 (1993)
- Lanza R, Langer R, Vacanti J, Principles of tissue engineering, 3rd edition, Academic Press, San Diego, CA, 2007.
- Park SA, Lee JH, Kim WD, Elastom. Comp., 44, 106 (2009)
- Shin YM, Shin H, Polym. Sci. Technol., 18(5), 458 (2007)
- Kim MS, Kim YJ, Polym. Korea, 43(3), 337 (2019)
- Santos CFL, Silva AP, Lopes L, Pires I, Correia IJ, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 32, 1293 (2012)
- Kumar A, Mandal S, Barui S, Vasireddi R, Gbureck U, Gelinsky M, Basu B, Mater. Sci. Eng. R-Rep., 103, 1 (2016)
- Kao CT, Lin CC, Chen YW, Yeh CH, Fang HY, Shie MY, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 56, 165 (2015)
- Pati F, Song TH, Rijial GJ, Jang J, Kim SW, Cho DW, Biomaterials, 37, 230 (2015)
- Luo ZY, Yang Y, Deng Y, Sun YH, Yang HT, Wei SC, Colloids Surf. B: Biointerfaces, 143, 243 (2016)
- Bose S, Vahabzadeh S, Bandyopadhyay A, Materials Today, 16, 496 (2013)
- Kim BN, Ko YG, Yeo T, Kim EJ, Kwon OK, Kwon OH, ACS Biomater. Sci. Eng., 5, 5266 (2019)
- Shim JH, Won JY, Park JH, Bae JH, Ahn G, Kim CH, Lim DH, Cho DW, Yun WS, Bae EB, Jeong CM, Huh JB, Int. J. Mol. Sci., 18, 899 (2017)
- Zhao D, Zhu T, Li J, Cui L, Zhang Z, Zhuang X, Ding J, Bioact. Mater., 6, 346 (2021)
- Cui L, Zhang J, Zou J, Yang X, Guo H, Tian H, Zhang P, Wang Y, ZhangN, Zhuang X, Li Z, Ding J, Chen X, Biomaterials, 230, 119617 (2020)
- Zhu T, Cui Y, Zhang M, Zhao D, Liu G, Ding J, Bioact. Mater., 5, 584 (2020)
- Zhang Y, Liu X, Zeng L, zhang J, Zuo J, Zou J, Ding J, Chen X, Adv. Funct. Mater., 29, 190327 (2019)
- Wang L, Dormer NH, Bonewald LF, Detamore MS, Tissue Eng. A, 16, 1937 (2010)
- Santavirata S, Konttinen YT, Saito T, Gronblad M, Partio E, Kemppinen P, Rokkanen P, J. Bone Jt. Surg., 72-B, 597 (1990).
- Atala A, Yoo JJ, Essentials of 3D biofabrication and translation, Academic Press, San Diego, CA, 2015.
- Zhang HY, Jiang HB, Ryu JH, Kang H, Kim KM, Kwon JS, Materials, 12, 1718 (2019)
- Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S, Curr. Opin. Biotechnol., 40, 103 (2016)
- Woo IY, Lyu MY, Polym. Korea, 44(4), 471 (2020)
- Li S, Xu Y, Yu J, Becker ML, Biomaterials, 141, 176 (2017)
- Spicer PP, Kretlow JD, Young S, Jansen JA, Kasper FK, Mikos AG, Nat. Protoc., 7, 1918 (2012)
- Jun GY, Ko YG, Kim DJ, Kwon OK, Kim WI, Chung HY, Kwon OH, Polym. Korea, 44(4), 549 (2020)
- Low YJ, Andriyana A, Ang BC, Abidin NIZ, Polym. Eng. Sci., 1 (2020).
- Raghuvanshi RS, Singh M, Talwar GP, Int. J. Pharm., 93, R1 (1993)
- Kobayashi H, Shiraki K, Ikada Y, J. Biomed. Mater. Res., 26, 1463 (1992)