Journal of Industrial and Engineering Chemistry, Vol.94, 457-464, February, 2021
PEGylated graphene oxide-based colorimetric sensor for recording temperature
E-mail:
Temperature is an essential parameter in various fields, including chemistry, biology, environmentology, industry, and medical sciences. Currently, temperature detection using practical colorimetric methods has not been sufficiently explored. In this study, we established a polyethylene glycol-functionalized graphene oxide (PEG-GO)-based colorimetric thermosensor using guanine (G)-rich DNAzyme (Dz) and peptide nucleic acid (PNA). Dz served as the template DNA for thermosensitive nanostructures and as catalytic DNA for colorimetric assays. The peroxidase-like activity of Dz was completely inhibited after hybridizing with PNA, which could be recovered in the presence of PEG-GO in a thermosensitive manner, resulting in colorimetric temperature visualization. The temperature-sensing range of this system could be simply tuned by designing a PNA strand based on the melting temperature of the Dz/PNA duplex of interest. Smartphone assistance in this colorimetric platform enabled more precise, sensitive, and practical recognition of fine temperature changes. Moreover, this design permitted recall of the target temperature, enabling the visualization of the temperature at a later point. This robust system has the potential to be a tool for rapid temperature-sensing applications, such as in health diagnostics and food safety, and it could become a valuable resource for basic and applied nanobiotechnology research.
Keywords:Colorimetric sensor;Thermosensor;Nanostructure;PEGylated graphene oxide;Peptide nucleic acid;G-quadruplex DNAzyme
- Donner JS, Thompson SA, Kreuzer MP, Baffou G, Quidant R, Nano Lett., 12, 2107 (2012)
- Saita EA, de Mendoza D, Biochim. Biophys. Acta, 1848, 1757 (2015)
- Bu C, Mu L, Cao X, Chen M, She G, Shi W, Nanotechnology, 29, 295501 (2018)
- Zhang K, Zhu X, Jia F, Auyeung E, Mirkin CA, J. Am. Chem. Soc., 135, 14102 (2013)
- Uchiyama S, Matsumura Y, de Silva AP, Iwai K, Anal. Chem., 75, 5926 (2003)
- Ryu S, Yoo I, Song S, Yoon B, Kim JM, J. Am. Chem. Soc., 131(11), 3800 (2009)
- Hu X, Li Y, Liu T, Zhang G, Liu S, ACS Appl. Mater. Interfaces, 7, 15551 (2015)
- Yokota T, Inoue Y, Terakawa Y, Reeder J, Kaltenbrunner M, Ware T, et al., Proc. Natl. Acad. Sci. U. S. A., 112, 14533 (2015)
- Yamamoto Y, Yamamoto D, Takada M, Naito H, Arie T, Akita S, et al., Adv. Healthc. Mater., 6 (2017)
- Zhao Y, Shi C, Yang X, Shen B, Sun Y, Chen Y, et al., ACS Nano, 10, 5856 (2016)
- Boles RG, Chaudhari D, Soderkvist J, Podberezin M, Ito M, Clin. Chem., 49, 198 (2003)
- Wong FHC, Banks DS, Abu-Arish A, Fradin C, J. Am. Chem. Soc., 129(34), 10302 (2007)
- Biju V, Makita Y, Sonoda A, Yokoyama H, Baba Y, Ishikawa M, J. Phys. Chem. B, 109(29), 13899 (2005)
- Wang XD, Song XH, He CY, Yang CJ, Chen G, Chen X, Anal. Chem., 83, 2434 (2011)
- Freddi S, Sironi L, D’Antuono R, Morone D, Dona A, Cabrini E, et al., Nano Lett., 13, 2004 (2013)
- Jeon J, Lee HBR, Bao Z, Adv. Mater., 25(6), 850 (2013)
- Schildkraut C, Biopolymers, 3, 195 (1965)
- Wu P, Nakano S, Sugimoto N, Eur. J. Biochem., 269, 2821 (2002)
- Ke GL, Wang CM, Ge Y, Zheng NF, Zhu Z, Yang CJ, J. Am. Chem. Soc., 134(46), 18908 (2012)
- Jonstrup AT, Fredsoe J, Andersen AH, Sensors, 13, 5937 (2013)
- Yin BC, Ye BC, Tan WH, Wang H, Xie CC, J. Am. Chem. Soc., 131(41), 14624 (2009)
- Bhattacharyya D, Arachchilage GM, Basu S, Front. Chem., 4, 38 (2016)
- Li W, Li Y, Liu Z, Lin B, Yi H, Xu F, et al., Nucleic Acids Res., 44, 7373 (2016)
- Lee J, Kim YK, Lee S, Yoon S, Kim WK, Sens. Actuators B-Chem., 282, 861 (2019)
- Cheng X, Liu X, Bing T, Cao Z, Shangguan D, Biochemistry, 48, 7817 (2009)
- Ma DL, Zhang Z, Wang M, Lu L, Zhong HJ, Leung CH, Chem. Biol., 22, 812 (2015)
- Kwok CK, Merrick CJ, Trends Biotechnol., 35, 997 (2017)
- Dreyer DR, Park S, Bielawski CW, Ruoff RS, Chem. Soc. Rev., 39, 228 (2010)
- Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS, Adv. Mater., 22(35), 3906 (2010)
- Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, et al., Nano Res., 1, 203 (2008)
- Kim YK, Min DH, Nanoscale, 5, 3638 (2013)
- Yin PT, Shah S, Chhowalla M, Lee KB, Chem. Rev., 115(7), 2483 (2015)
- Treossi E, Melucci M, Liscio A, Gazzano M, Samori P, Palermo V, J. Am. Chem. Soc., 131(43), 15576 (2009)
- Lee J, Park IS, Jung E, Lee Y, Min DH, Biosens. Bioelectron., 62, 140 (2014)
- Lee J, Kim J, Kim S, Min DH, Adv. Drug Deliv. Rev., 105, 275 (2016)
- Weaver CL, LaRosa JM, Luo X, Cui XT, ACS Nano, 8, 1834 (2014)
- Shareena TPD, McShan D, Dasmahapatra AK, Tchounwou PB, Nanomicro Lett., 10, 53 (2018)
- Wu M, Kempaiah R, Huang PJJ, Maheshwari V, Liu JW, Langmuir, 27(6), 2731 (2011)
- Liu B, Sun Z, Zhang X, Liu J, Anal. Chem., 85, 7987 (2013)
- Swathi RS, Sebastian KL, J. Chem. Phys., 130, 086101 (2009)
- Kim J, Cote LJ, Kim F, Huang JX, J. Am. Chem. Soc., 132(1), 260 (2010)
- Guo S, Du D, Tang L, Ning Y, Yao Q, Zhang GJ, Analyst, 138, 3216 (2013)
- Lee J, Park G, Min DH, Chem. Commun., 51, 14597 (2015)
- Ryoo SR, Lee J, Yeo J, Na HK, Kim YK, Jang H, et al., ACS Nano, 7, 5882 (2013)
- Nielsen PE, Egholm M, Buchardt O, Bioconjug. Chem., 5, 3 (1994)
- Menchise V, De Simone G, Tedeschi T, Corradini R, Sforza S, Marchelli R, et al., Proc. Natl. Acad. Sci. U. S. A., 100, 12021 (2003)
- Mergny JL, Lacroix L, Oligonucleotides, 13, 515 (2003)
- Wang J, Pan X, Liang X, J. Anal. Methods Chem., 2016, 531893 (2016)
- Rychlik W, Spencer WJ, Rhoads RE, Nucleic Acids Res., 18, 6409 (1990)
- Panjkovich A, Melo F, Bioinformatics, 21, 711 (2005)