Journal of Industrial and Engineering Chemistry, Vol.94, 489-497, February, 2021
Structure evolution in carbon molecular sieve membranes derived from binaphthol-6FDA polyimide and their gas separation performance
E-mail:,
Here we reported a causal relationship between the molecular structure of binaphthol-based polyimide precursor and the pore-size distribution of the derived carbon membrane. The binaphthol-based polyamide acid is synthesized from 2,2′-diol-1,1′-binaphthyl-6,6′-diamine and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA). Then, an azeotropic imidiaztion method was used to synthesize the polyimide with naphthol groups (XS1). When the imidization is carried out by using acetic anhydride, the polyimide with acetyl groups (XS4) is achieved. The CMS membranes prepared by pyrolyzing XS1 and XS4 at 500, 550, and 600 ℃ are named using the temperature as the suffix, such as XS1-500. Their pore evolution has been investigated using TGA, FTIR, XRD, and Raman measurements. The trimodal pore-size distribution is in the carbon molecular sieve (CMS) membranes derived from XS4 and the CMS ones derived from XS1 exhibit a bimodal pore structure. Among them, XS4-500 exhibits the highest gas permeabilities of 3332 barrer for CO2, 773 barrer for O2, and 119 barrer for N2. XS1-500 only affords the CO2, O2, and N2 permeabilities of 1086, 230, and 30.2 barrer. The esterification of naphthol not just disturbs the hydrogen bonds between polyimide chains but also affects the pore generation of the derived CMS membranes. Our work provides an effective way to enhance the gas permeability of a CMS membrane derived from the binaphthol-based polyimide.
- Baker R, Membr. Technol., 2001, 5 (2001)
- Bernardo P, Drioli E, Golemme G, Ind. Eng. Chem. Res., 48(10), 4638 (2009)
- Sanders DE, Smith ZP, Guo RL, Robeson LM, McGrath JE, Paul DR, Freeman BD, Polymer, 54(18), 4729 (2013)
- Keating JJ, Imbrogno J, Belfort G, ACS Appl. Mater. Interfaces, 8, 28383 (2016)
- Kim TH, Koros WJ, Husk GR, O’Brien KC, J. Membr. Sci., 37, 45 (1988)
- Sadeghi M, Semsarzadeh MA, Barikani M, Ghalei B, J. Membr. Sci., 354(1-2), 40 (2010)
- Sakaguchi T, Hashimoto T, Polym. J., 46, 391 (2014)
- Zhang B, Wang T, Liu S, Zhang S, Qiu J, Chen Z, Cheng H, Microporous Mesoporous Mater., 96, 79 (2006)
- Duthie X, Kentish S, Powell C, Nagai K, Qiao G, Stevens G, J. Membr. Sci., 294(1-2), 40 (2007)
- Wang SS, Zeng MY, Wang ZH, J. Membr. Sci., 109(2), 267 (1996)
- Zhang XY, Hu HQ, Zhu YD, Zhu SW, J. Membr. Sci., 289(1-2), 86 (2007)
- Jiao WM, Ban YJ, Shi ZX, Jiang XS, Li YS, Yang WS, J. Membr. Sci., 533, 1 (2017)
- Fu YJ, Hu CC, Lin DW, Tsai HA, Huang SH, Huang WS, Lee KR, Lai JY, Carbon, 113, 10 (2017)
- Ash R, Barrer RM, Lowson RT, J. Chem. Soc.-Faraday Trans., 69, 2166 (1973)
- Ash R, Barrer RM, Foley T, J. Membr. Sci., 1, 355 (1976)
- Ash R, Barrer RM, Chio HT, Edge AVJ, Proc. R. Soc. Lond. A Math. Phys. Sci., 365, 267 (1979)
- Ash R, Barrer RM, Sharma P, J. Membr. Sci., 1, 17 (1976)
- Ali Z, Ghanem BS, Wang Y, Pacheco F, Ogieglo W, Vovusha H, Genduso G, Schwingenschlogl U, Han Y, Pinnau I, Adv. Mater., 32, 207017 (2020)
- Hatori H, Yamada Y, Shiraishi M, Nakata H, Yoshitomi S, Carbon, 30, 305 (1992)
- Jones CW, Koros WJ, Carbon, 32, 1419 (1994)
- Ngamou PHT, Ivanova ME, Guillon O, Meulenberg WA, J. Mater. Chem. A, 7, 7082 (2019)
- Hazazi K, Ma XH, Wang YG, Ogieglo W, Alhazmi A, Han Y, Pinnau I, J. Membr. Sci., 585, 1 (2019)
- Ogieglo W, Furchner A, Ma X, Hazazi K, Alhazmi AT, Pinnau I, ACS Appl. Mater. Interfaces, 11, 18770 (2019)
- Kanezashi M, Tomarino Y, Nagasawa H, Tsuru T, J. Membr. Sci., 582, 59 (2019)
- Fu SL, Sanders ES, Kulkarni SS, Koros WJ, J. Membr. Sci., 487, 60 (2015)
- Ning X, Koros WJ, Carbon, 66, 511 (2014)
- Perez-Francisco JM, Santiago-Garcia JL, Loria-Bastarrachea MI, Paul DR, Freeman BD, Aguilar-Vega M, J. Membr. Sci., 597, 117703 (2020)
- Wang Z, Ren H, Zhang S, Zhang F, Jin J, ChemSusChem, 11, 916 (2018)
- Adams JS, Itta AK, Zhang C, Wenz GB, Sanyal O, Koros WJ, Carbon, 141, 238 (2019)
- Han SH, Misdan N, Kim S, Doherty CM, Hill AJ, Lee YM, Macromolecules, 43(18), 7657 (2010)
- Kailani MH, Sung CSP, Macromolecules, 31(17), 5779 (1998)
- Zhang C, Koros WJ, Adv. Mater., 29, 170163 (2017)
- Abdulhamid MA, Genduso G, Ma X, Pinnau I, Sep. Purif. Technol., 257, 117910 (2021)
- Qiao Z, Zhao S, Wang J, Wang S, Wang Z, Guiver MD, Angew. Chem.-Int. Edit., 128, 9467 (2016)
- An H, Lee AS, Kammakakam I, Hwang SS, Kim JH, Lee JH, Lee JS, J. Membr. Sci., 545, 358 (2018)
- ujardin W, Van Goethem C, Zhang Z, Verbeke R, Dickmann M, Egger W, Nies E, Vankelecom I, Koeckelberghs G, Eur. Polym. J., 114, 134 (2019)
- Shin JH, Yu HJ, Park J, Lee AS, Hwang SS, Kim SJ, Park S, Cho KY, Won W, Lee JS, J. Membr. Sci., 598, 117660 (2020)
- Yu HJ, Shin JH, Lee AS, Hwang SS, Kim JH, Back S, Lee JS, J. Membr. Sci., 118814 (2020).
- Fu SL, Sanders ES, Kulkarni S, Chu YH, Wenz GB, Koros WJ, J. Membr. Sci., 539, 329 (2017)
- Steel KM, Koros WJ, Carbon, 41, 253 (2003)
- Ferrari A, Robertson J, Phys. Rev. B, 61, 14095 (2000)
- Steel KM, Koros WJ, Carbon, 43, 1843 (2005)
- Swaidan R, Ghanem B, Pinnau I, ACS Macro Lett., 4, 947 (2015)
- Robeson LM, J. Membr. Sci., 320(1-2), 390 (2008)
- Swaidan R, Ma XH, Litwiller E, Pinnau I, J. Membr. Sci., 447, 387 (2013)
- Koros WJ, Mahajan R, J. Membr. Sci., 175(2), 181 (2000)
- Hu CP, Polintan CP, Tayo LL, Chou SC, Tsai HA, Hung WS, Hu CC, Lee KR, Lai JY, Carbon, 143, 343 (2019)
- Li S, Jo HJ, Han SH, Park CH, Kim S, Budd PM, Lee YM, J. Membr. Sci., 434, 137 (2013)
- Rungta M, Xu L, Koros WJ, Carbon, 85, 429 (2015)
- Rungta M, Wenz GB, Zhang C, Xu L, Qiu W, Adams JS, Koros WJ, Carbon, 115, 237 (2017)