화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.1, 20-27, February, 2021
DTO 반응에 미치는 SAPO-34 촉매의 식각 처리 효과
Effect of Etching Treatment of SAPO-34 Catalyst on Dimethyl Ether to Olefins Reaction
E-mail:
초록
DTO (dimethyl ether to olefins) 반응에서 촉매의 수명 향상을 목적으로 SAPO-34 촉매의 식각 처리 효과를 연구했다. NH3 수용액은 HCl과 같은 강산 또는 NaOH와 같은 강알칼리 수용액과 비교하여 식각의 진행 정도를 제어할 수 있는 적절한 처리제였다. 따라서 NH3 수용액의 처리 농도와 시간을 변수로 하여 SAPO-34 촉매의 특성과 수명에 미치는 영향을 관찰하였다. NH3 수용액의 처리 농도 또는 시간이 증가함에 따라 SAPO-34 촉매 결정 면의 중심에서부터 침식이 진행되었으며, 점차적으로 산 점 농도와 산 세기가 감소하는 것으로 나타났다. 한편, 적절한 처리 조건에서 SAPO-34 촉매의 외부 표면적과 메조 세공 부피는 증가하는 것으로 나타났다. 처리 농도와 시간이 각각 0.05 M와 3 h일 때, 처리된 SAPO-34 촉매의 수명이 가장 우수했으며 처리 전 촉매와 비교하여 약 36% (DME 전환율 > 90% 기준)까지 크게 향상되었다. NH3 수용액을 이용한 온화한 처리과정에서 SAPO-34 촉매의 식각 진행에 대한 모형을 제안하였다.
Effects of the etching treatment of SAPO-34 catalyst were investigated to improve the catalytic lifetime in DTO reaction. The aqueous NH3 solution was a more appropriate treatment agent which could control the degree of etching progress, compared to that of using a strong acid (HCl) or alkali (NaOH) solution. Therefore, the effect on characteristics and lifetime of SAPO-34 catalyst was observed using the treatment concentration and time of aqueous NH3 solution as variables. As the treatment concentration or time of aqueous NH3 solution increased, the growth of erosion was proceeded from the center of SAPO-34 crystal plane, and the acid site concentration and strength gradually decreased. Meanwhile, it was found that external surface area and mesopore volume of SAPO-34 catalyst increased at appropriate treatment conditions. When the treatment concentration and time were 0.05 M and 3 h, respectively, the lifetime of the treated SAPO-34 catalyst was the longest, and was significantly enhanced by ca. 36% (based on DME conversion of > 90%) compared to that of using the untreated catalyst. The model for the etching progress of SAPO-34 catalyst in a mild treatment process using aqueous NH3 solution was also proposed.
  1. Yoshimura Y, Kijima N, Hayakawa T, Murata K, Suzuki K, et al., Catal. Surv. Asia, 4, 157 (2001)
  2. Bari Siddiqui MA, Aitani AM, Saeed MR, Al-Khattaf S, Top. Catal., 53, 1387 (2010)
  3. Park YK, Jeon JY, Han SY, Kim JR, Lee CW, Korean Chem. Eng. Res., 41, 549 (2003)
  4. Kim JY, Jo YM, Kim SB, Appl. Chem. Eng., 30(6), 712 (2019)
  5. Dang NM, Lee K, Appl. Chem. Eng., 29(1), 1 (2018)
  6. Ilias S, Bhan A, ACS Catal., 3, 18 (2013)
  7. Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens TVW, Joensen F, Bordiga S, Lillerud KP, Angew. Chem.-Int. Edit., 51, 5810 (2012)
  8. Wang C, Pan X, Bao X, Chin. Sci. Bull., 55, 1117 (2010)
  9. Xiang D, Qian Y, Man Y, Yang SY, Appl. Energy, 113, 639 (2014)
  10. Liu Y, Chen JF, Bao J, Zhang Y, ACS Catal., 5, 3905 (2015)
  11. Seo G, Min BG, Korean Chem. Eng. Res., 44(4), 329 (2006)
  12. Lefevere J, Mullens S, Meynen V, Noyen JV, Chem. Pap., 68, 1143 (2014)
  13. Semelsberger TA, Borup RL, Greene HL, J. Power Sources, 156(2), 497 (2006)
  14. Fjermestad T, Svelle S, Swang O, J. Phys. Chem. C, 119, 2086 (2015)
  15. Tan J, Liu Z, Bao X, Liu X, Han X, He C, Zhai R, Microporous Mesoporous Mater., 53, 97 (2002)
  16. Baek SC, Lee YJ, Jun KW, Korean Chem. Eng. Res., 44(4), 345 (2006)
  17. Dahl IM, Mostad H, Akporiaye D, Wendelbo R, Microporous Mesoporous Mater., 29, 185 (1999)
  18. Chen D, Moljord K, Holmen A, Microporous Mesoporous Mater., 164, 239 (2012)
  19. Gao YL, Chen SL, Wei YQ, Wang Y, Sun W, Cao YQ, Zeng PH, Chem. Eng. J., 326, 528 (2017)
  20. Lee SG, Kim HS, Kim YH, Kang EJ, Lee DH, Park CS, J. Ind. Eng. Chem., 20(1), 61 (2014)
  21. Kim HS, Lee SG, Kim YH, Lee DH, Lee JB, Park CS, J. Nanomater., 2013, 1 (2013)
  22. Aghaei E, Haghighi M, Pazhohniya Z, Aghamohammadi S, Microporous Mesoporous Mater., 226, 331 (2016)
  23. Song YH, Chae HJ, Jeong KE, Kim CU, Shin CH, Jung SY, Appl. Chem. Eng., 19, 559 (2008)
  24. Li JQ, Li Z, Han DZ, Wu JH, Powder Technol., 262, 177 (2014)
  25. Kang EJ, Lee DH, Kim HS, Choi KH, Park CS, Kim YH, Appl. Chem. Eng., 25(1), 34 (2014)
  26. Soltanali S, Darian JT, Powder Technol., 355, 127 (2019)
  27. Wang Y, Wang Z, Sun C, Chen H, Li H, Li H, Trans. Tianjin Univ., 23, 501 (2017)
  28. Sun Q, Xie Z, Yu J, Natl. Sci. Rev., 5, 542 (2018)
  29. Sun C, Wang Y, Wang Z, Chen H, Wang X, Li H, Sun L, Fan C, Wang C, Zhang X, C. R. Chimie., 21, 61 (2018)
  30. Katoh M, Horiuchi K, Satoh A, Aoyagi K, Sugiyama S, J. Encapsul. Adsorpt. Sci., 9, 149 (2019)
  31. Liu X, Ren S, Zeng G, Liu G, Wu P, Wang G, Chen X, Liu Z, Sun Y, RSC Adv., 6, 28787 (2016)
  32. Qiao Y, Yang M, Gao B, Wang L, Tian P, Xu S, Liu Z, Chem. Commun., 52, 5718 (2016)
  33. Pan Y, Chen G, Yang G, Chen X, Yu J, Inorg. Chem. Front., 6, 1299 (2019)
  34. Verboekend D, Milina M, Ramirez JP, Chem. Mater., 26, 4552 (2014)
  35. Ren S, Liu G, Wu X, Chen X, Wu M, Zeng G, Liu Z, Sun Y, Chin. J. Catal., 38, 123 (2017)
  36. Choi KH, Lee DH, Kim HS, Park CS, Kim YH, Appl. Chem. Eng., 26(2), 217 (2015)
  37. Zhu YL, Dai H, Duan Y, Chen Q, Zhang M, Cryst. Growth Des., 20, 2623 (2020)
  38. Jacobs PA, Flanigen EM, Jansen JC, van Bekkum H, Introduction to Zeolite Science and Practice, 2nd ed., 370-371, Elsevier science, Netherlands (2001).
  39. Zhao LA, Gao JS, Xu CM, Shen BJ, Fuel Process. Technol., 92(3), 414 (2011)
  40. Zhang D, Wei Y, Xu L, Chang F, Liu Z, Meng S, Su BL, Liu Z, Microporous Mesoporous Mater., 116, 684 (2008)