화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.95, 37-50, March, 2021
Morphological structure details, size distributions and magnetic properties of iron oxide nanoparticles
E-mail:,
This study reports the first morphology and crystalline structure details of iron oxide nanoparticles in a comprehensive manner. A series of iron oxide nanoparticles were synthesized in 1-octadecene from iron(III) acetylacetonate with the aid of oleic acid surfactant and then followed by post thermal processes. Quantitative small and wide angle X-ray scattering analyses using synchrotron radiation sources were performed together with electron microscopy, infrared spectroscopy and thermogravimery, providing morphology and crystalline structure details. Larger size of nanoparticles are synthesized by higher loading of the surfactant. Prolate ellipsoidal nanoparticles, rather than spherical particles, are always synthesized in single unimodal and narrow size distribution. The individual particles are composed of core, core-shell interface, shell, and shell-surfactant interface, regardless of the sizes. Magnetite-like crystalline phases are predominant. In addition, wuestite-like crystalline phases are discernible as minor components. For a given particle, the size and distribution are varied very little by the post thermal proccesses. Nevertheless, the other morphology characteristics, as well as the crystalline phases are significantly influenced through the post thermal process with a mixture of nitrogen and oxygen. In particular, the core part is thickened, the density gap between the core and the shell is reduced, and ferrimagnetic magnetite-like crystallites are enlarged and more populated. Paramagnetic wuestite-like crystalline phases are decreased substantially or disappeared completely. These enhanced morphology and crystalline characteristics make great contributions to improve magnetization performances significantly. Overall, this study provides the well-controlled synthetic schemes and morphology/crystalline structure details that are essential for better applications of iron oxide nanoparticles in various advanced fields including biomedicine and nanotechnology.
  1. Buschow KJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, Science and Technology, Elsevier, New York, 2001.
  2. Jullien A, Guinier R, The Solid State from Superconductors to Superalloys, Oxford Univ. Press, Oxford, 1989.
  3. Schoenherr S, University of San Diego, IEEE Magnetics Society Seminar.
  4. Jozwiak WK, Kaczmarek E, Maniecki TP, Ignaczak W, Maniukiewicz W, Appl. Catal. A: Gen., 326(1), 17 (2007)
  5. Blaney L, Lehigh Rev., 15, 33 (2007)
  6. Rajput S, Pittman CU, Mohan D, J. Colloid Interface Sci., 468, 334 (2016)
  7. Nyssen J, Diependaele S, Goossens R, Zeitschrift fur Geomorphologie, 56, 23 (2012).
  8. Gleitzer C, Goodenough J, Mixed-valence iron oxides p. 1-76,, Springer, Berlin, 1985.
  9. Anthony JW, Handbook of Mineralogy. Vol. 3: Halides, Hydroxides and Oxides, Mineral Data Publishing, Arizona, 1997.
  10. Tartaj P, Morales MP, Gonzalez-Carreno T, Veintemillas-Verdaguer S, Serna CJ, Adv. Mater., 23(44), 5243 (2011)
  11. Lappas A, Antonaropoulos G, Brintakis K, Vasilakaki M, Trohidou KN, Iannotti V, Ausanio G, Kostopoulou A, Abeykoon M, Robinson IK, Phys. Rev. X, 9, 041044 (2019)
  12. Panchal V, Bhandarkar U, Neergat M, Suresh K, Appl. Phys. A, 114, 537 (2014)
  13. Roca AG, Gutierrez L, Gavilan H, Brollo MEF, Veintemillas-Verdaguer S, del Puerto Morales M, Adv. Drug Deliv. Rev., 138, 68 (2019)
  14. Panchal V, Neergat M, Bhandarkar U, J. Nanoparticle Res., 13, 3825 (2011)
  15. McIlroy D, Huso J, Kranov Y, Marchinek J, Ebert C, Moore S, Marji E, Gandy R, Hong YK, Norton MG, J. Appl. Phys., 93, 5643 (2003)
  16. Muro-Cruces J, Roca AG, Lopez-Ortega A, Fantechi E, del-Pozo-Bueno D, Estrade S, Peiro F, Sepulveda B, Pineider F, Sangregorio C, ACS Nano, 13, 7716 (2019)
  17. Rodriguez AF, Moya C, Escoda-Torroella M, Romero A, Labarta A, Batlle X, J. Mater. Chem. C, 6, 875 (2018)
  18. Unni M, Uhl AM, Savliwala S, Savitzky BH, Dhavalikar R, Garraud N, Arnold DP, Kourkoutis LF, Andrew JS, Rinaldi C, ACS Nano, 11, 2284 (2017)
  19. Kemp SJ, Ferguson RM, Khandhar AP, Krishnan KM, RSC Adv., 6, 77452 (2016)
  20. Sun SH, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li GX, J. Am. Chem. Soc., 126(1), 273 (2004)
  21. Mamani JB, Gamarra LF, Brito GES, Mater. Res., 17, 542 (2014)
  22. Chen R, Christiansen MG, Anikeeva P, ACS Nano, 7, 8990 (2013)
  23. Salazar JS, Perez L, De Abril O, Phuoc LT, Ihiawakrim D, Vazquez M, Greneche JM, Begin-Colin S, Pourroy G, Chem. Mater., 23, 1379 (2011)
  24. Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T, Nat. Mater., 3(12), 891 (2004)
  25. Woo K, Hong J, Choi S, Lee HW, Ahn JP, Kim CS, Lee SW, Chem. Mater., 16, 2814 (2004)
  26. Luo W, Nagel SR, Rosenbaum T, Rosensweig R, Phys. Rev. Lett., 67, 2721 (1991)
  27. Lee JS, Tan RP, Wu JH, Kim YK, Appl. Phys. Lett., 99, 062506 (2011)
  28. Dobisz EA, Bandic ZZ, Wu TW, Albrecht T, Proc. IEEE, 96, 1836 (2008)
  29. Pankhurst QA, Connolly J, Jones SK, Dobson J, J. Phys. D-Appl. Phys., 36, R167 (2003)
  30. Gabbasov T, Polikarpov M, Cherepanov V, Chuev M, Mischenko I, Lomov A, Wang A, Panchenko V, J. Magn. Magn. Mater., 380, 111 (2015)
  31. Baaziz W, Pichon BP, Fleutot S, Liu Y, Lefevre C, Greneche JM, Toumi M, Mhiri T, Begin-Colin S, J. Phys. Chem. C, 118, 3795 (2014)
  32. Wetterskog E, Tai CW, Grins J, Bergstrom L, Salazar-Alvarez G, ACS Nano, 7, 7132 (2013)
  33. Torruella P, Arenal R, De La Pena F, Saghi Z, Yedra L, Eljarrat A, Lopez-Conesa L, Estrader M, Lopez-Ortega A, Salazar-Alvarez G, Nano Lett., 16, 5068 (2016)
  34. Estrader M, Lopez-Ortega A, Golosovsky IV, Estrade S, Roca AG, Salazar-Alvarez G, Lopez-Conesa L, Tobia D, Winkler E, Ardisson JD, Nanoscale, 7, 3002 (2015)
  35. Chalasani R, Vasudevan S, J. Phys. Chem. C, 115, 18088 (2011)
  36. Petkov V, Cozzoli PD, Buonsanti R, Cingolani R, Ren Y, J. Am. Chem. Soc., 131(40), 14264 (2009)
  37. Gordon TR, Diroll BT, Paik T, Doan-Nguyen VV, Gaulding EA, Murray CB, Chem. Mater., 27, 2502 (2015)
  38. Ree BJ, Satoh Y, Jin KS, Isono T, Kim WJ, Kakuchi T, Satoh T, Ree M, NPG Asia Mater., 9, e453 (2017)
  39. Ngoi KH, Xiang L, Wong JC, Chia CH, Jin KS, Ree MH, J. Ind. Eng. Chem., 89, 212 (2020)
  40. Kim M, Rho Y, Jin KS, Ahn B, Jung S, Kim H, Ree M, Biomacromolecules, 12(5), 1629 (2011)
  41. Xiang L, Ryu W, Kim J, Ree M, Polym. Chem., 11, 4630 (2020)
  42. Glatter O, J. Appl. Crystallogr., 10, 415 (1977)
  43. Thanh NTK, Maclean N, Mahiddine S, Chem. Rev., 114(15), 7610 (2014)
  44. Bronstein LM, Huang X, Retrum J, Schmucker A, Pink M, Stein BD, Dragnea B, Chem. Mater., 19, 3624 (2007)
  45. Roonasi P, Holmgren A, Appl. Surf. Sci., 255(11), 5891 (2009)
  46. Zhang L, He R, Gu HC, Appl. Surf. Sci., 253(5), 2611 (2006)
  47. Shen LF, Laibinis PE, Hatton TA, Langmuir, 15(2), 447 (1999)
  48. Yang K, Peng HB, Wen YH, Li N, Appl. Surf. Sci., 256(10), 3093 (2010)
  49. Mosafer J, Abnous K, Tafaghodi M, Jafarzadeh H, Ramezani M, Colloids Surf. A: Physicochem. Eng. Asp., 514, 146 (2017)
  50. Schwertmann U, Cornell RM, Iron oxides in the laboratory: Preparation and characterization, Wiley, Darmstadt, 2008.
  51. Swanson HE, Natl. Bur. Stand. Monogr., 25, 31 (1953)
  52. Wyckoff RW, Crittenden E, Kristallogr Z, Crystal. Mater., 63, 144 (1926)
  53. Scherrer P, Nachr. Gesells. Wissen. Gottingen, 2, 98 (1918)
  54. Patterson A, Phys. Rev., 56, 978 (1939)