화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.95, 376-387, March, 2021
Highly dispersed Ni2P clusters inlaid in micropore openings on mesoporous ZSM-5 zeolite and its catalytic performance in the phenylacetylene semi-hydrogenation
E-mail:
Preparation of Ni2P phase with cluster size and high stability is significant for enhancing its catalytic performance. Herein, Ni2P nanoclusters (<1 nm) inlaid in micropore openings on mesoporous ZSM-5 zeolite (MZSM-5) was prepared through citric acid-assisted, two-step impregnation method under the reduction temperature of 400 °C. The facilitation effect of the citric acid and support surface properties on the formation of Ni2P clusters was investigated. The formation of Ni(H2cit)+ complex promotes the dispersion of the Ni precursor on the zeolite surface. After calcination, the free Ni species interact stronger with the acidic hydroxyl groups on MZSM-5 than that with silanol on mesoporous TS-1(MTS-1), Silicalite-1 (MSilicalite-1) and SiO2, facilitating the formation of Ni2P nanoclusters on the MZSM-5 micropore openings after the calcined Ni catalyst was loaded with P species and followed by activation treatment. The obtained Ni2P clusters exhibit higher intrinsic activity (robs = 1.50 mol kg-1 s-1) than MTS- 1, MSilicalite-1 and SiO2 supported Ni2P catalysts (0.80, 0.76, 0.40 mol kg-1 s-1) in the semihydrogenation of phenylacetylene.
  1. Guan Q, Li W, J. Catal., 271, 413 (2017)
  2. Jeong HR, Shin M, Jeong BH, Jang JH, Han GB, Suh YW, J. Ind. Eng. Chem., 83, 189 (2020)
  3. Jang JG, Lee YK, Appl. Catal. B: Environ., 250, 181 (2019)
  4. Han W, Li X, Liu B, Li L, Tang H, Li Y, Lu C, Li X, Chem. Commun., 55, 9279 (2019)
  5. Cui S, Wang GG, Yang Y, Liu BJ, Fuel, 225, 10 (2018)
  6. Lee YK, Oyama ST, Appl. Catal. A: Gen., 548, 103 (2017)
  7. Topalian PJ, Liyanage DR, Danforth SJ, d’Aquino AI, Brock SL, Bussell ME, J. Phys. Chem. C, 123, 25701 (2019)
  8. Savithra GHL, Muthuswamy E, Bowker RH, Carrillo BA, Bussell ME, Brock SL, Chem. Mater., 25, 825 (2013)
  9. Oyama ST, Lee YK, J. Catal., 2, 393 (2008)
  10. Lee YK, Oyama ST, J. Catal., 239(2), 376 (2006)
  11. Liu LC, Corma A, Chem. Rev., 118(10), 4981 (2018)
  12. Lan XF, Hensen EJM, Weber T, Catal. Today, 292, 121 (2017)
  13. Chen T, Yang B, Li S, Wang K, Jiang X, Zhang Y, He G, Appl. Catal. B: Environ., 250, 181 (2019)
  14. Zhang L, Fu WQ, Yu QY, Tang TD, Zhao YC, Li YD, J. Catal., 345, 295 (2017)
  15. Song H, Dai M, Song H, Wan X, Xu X, Appl. Catal. A: Gen., 462-463, 247 (2013)
  16. Fu W, Zhang L, Wu D, Yu Q, Tang T, Ind. Eng. Chem. Res., 26, 7085 (2016)
  17. Tan QH, Cao Y, Li J, Renew. Energy, 150, 370 (2020)
  18. Yun GN, Ahn SJ, Takagaki A, Kikuchi R, Oyama ST, Catal. Today, 323, 54 (2019)
  19. Yun GN, Ghampson T, Movick WJ, Vargheese V, Kobayashi Y, Oyama ST, Chem. Eng. Sci., 223, 115697 (2020)
  20. Zhang L, Fu WQ, Yu QY, Tang TD, Zhao YC, Zhao HW, Li YD, J. Catal., 338, 210 (2016)
  21. Wang R, Smith K, Appl. Catal. A: Gen., 1-2, 18 (2009)
  22. Yu QY, Zhang L, Guo R, Sun J, Fu WQ, Tang T, Tang TD, Fuel Process. Technol., 159, 76 (2017)
  23. Fu W, Shen R, Bai E, Zhang L, Chen Q, Fang Z, Li G, Yi X, Zheng A, Tang T, ACS Catal., 10, 9043 (2018)
  24. Fu WQ, Zhang L, Wu DF, Xiang M, Zhuo Q, Huang K, Tao ZD, Tang TD, J. Catal., 330, 423 (2015)
  25. Boopathi G, Karthikeyan GG, Jaimohan SM, Pandurangan A, Barros AL, J. Phys. Chem. C, 17, 9257 (2018)
  26. Kim YS, Cho KS, Lee YK, J. Catal., 351, 67 (2017)
  27. Wachs IE, Catal. Today, 27(3-4), 437 (1996)
  28. Zhang Y, Zhou KD, Zhang LF, Wu HD, Guo J, Fuel, 253, 431 (2019)
  29. Fu WQ, Zhao WB, Zhang L, Zhang T, Tang TD, Chen Q, Ind. Eng. Chem. Res., 58(37), 17289 (2019)
  30. Da Costa-Serra JF, Navarro MT, Rey F, Chica A, Int. J. Hydrog. Energy, 37(8), 7101 (2012)
  31. Ren HP, Hao QQ, Ding SY, Zhao YZ, Zhu M, Tian SP, Ma Q, Song WQ, Miao Z, Liu ZT, Ind. Eng. Chem. Res., 57(48), 16257 (2018)
  32. Wang YD, Tao ZC, Wu BS, Xu J, Huo CF, Li K, Chen HM, Yang Y, Li YW, J. Catal., 322, 1 (2015)
  33. Infantes-Molina A, Cecilia JA, Pawelec B, Fierro JLG, Rodriguez-Castellon E, Jimenez-Lopez A, Appl. Catal. A: Gen., 390(1-2), 253 (2010)
  34. Gutierrez-Rubio S, Berenguer A, Prech J, Opanasenko M, Ochoa-Hernandez C, Pizarro P, Cejka J, Serrano DP, Coronado JM, Moreno I, Catal. Today, 345, 48 (2020)
  35. Wang R, Smith KJ, Appl. Catal. A: Gen., 380(1-2), 149 (2010)
  36. Puigdomenech I, Software M, Chemical Equilibrium Diagrams, (2010).
  37. Zelenin OY, Russ. J. Coord. Chem., 33, 346 (2007)
  38. Kotsakis N, Raptopoulou CP, Tangoulis V, Terzis A, Giapintzakis J, Jakusch T, Kiss T, Salifoglou A, Inorg. Chem., 42(1), 22 (2003)
  39. Wu HD, Duan AJ, Zhao Z, Qi DH, Li JM, Liu B, Jiang GY, Liu J, Wei YC, Zhang X, Fuel, 130, 203 (2014)
  40. Sun K, Marceau E, Che M, Phys. Chem. Chem. Phys., 8, 1731 (2006)
  41. Goebbert DJ, Garand E, Wende T, Bergmann R, Meijer G, Asmis KR, Neumark DM, J. Phys. Chem. A, 26, 7584 (2009)
  42. Tsay J, Fang T, J. Am. Ceram. Soc., 6, 1409 (1999)
  43. Zhang S, Xia Z, Chen X, Gao W, Qu YQ, Chem. Nano Mat., 4, 472 (2018)
  44. Chai YC, Han X, Li WY, Liu SS, Yao SK, Wang C, Shi W, Da-Silva I, Manuel P, Cheng YQ, Daemen LD, Ramirez-Cuesta AJ, Tang CC, Jiang L, Yang SH, Guan NJ, Li LD, Science, 368(6494), 1002 (2020)
  45. Yang L, Yu SY, Peng C, Fang XC, Cheng ZM, Zhou ZM, J. Catal., 370, 310 (2019)
  46. Rodriguez JA, Kim JY, Hanson JC, Sawhill SJ, Bussell ME, J. Phys. Chem. B, 107(26), 6276 (2003)
  47. Chen Y, Li C, Zhou J, Zhang S, Rao D, He S, Win M, Evans DG, Duan X, ACS Catal., 5, 5756 (2015)
  48. Delgado JA, Benkirane O, Claver C, Curulla-Ferre D, Godard C, Dalton Trans., 46, 12367 (2017)