화학공학소재연구정보센터
Polymer(Korea), Vol.45, No.2, 228-235, March, 2021
폴리아크릴로니트릴과 희생용 고분자 간 혼화성을 기반으로 한 다공성 탄소나노섬유의 내부기공구조 제어
Controlling Internal Pore Structure of Porous Carbon Nanofibers Based on the Miscibility between Polyacrylonitrile Matrix and Sacrificial Polymers
E-mail:
초록
폴리아크릴로니트릴(PAN) 기반 혼합 용액의 전기방사를 통해 다공성 탄소나노섬유를 제조하였으며, 혼합된 고분자와 PAN 간 혼화성이 기공 구조에 미치는 영향이 연구되었다. 탄화 후 다공성을 부여하기 위해 희생용 고분자로 폴리비닐리덴플로우라이드(PVDF)와 스티렌-아크릴로니트릴 공중합체(SAN) 두 종이 선택되었고, PAN과 두희생용 고분자 간 혼화성은 이론 및 실험적으로 평가되었다. 용해도 지수 분석 결과 SAN보다 PVDF가 쌍극자-쌍극자 상호작용을 통해 PAN과 더 가까운 친화성을 가짐이 증명되었다. PAN과 SAN(1.19)보다 PVDF(0.52) 간 더 낮은 용해도 지수 값은 PAN-PVDF계의 더 우수한 혼화성을 정량적으로 뒷받침해주었다. PAN/PVDF 혼합 필름의 동적 기계 분석에서, PAN과 PVDF의 유리전이온도를 나타내는 손실 탄젠트(tan δ) 피크가 각각 관찰되었고 서로를 향하여 이동하는 현상은 두 고분자의 부분적 혼화성을 입증하였다. 하지만, PAN/SAN 혼합필름의 경우, PAN의 tanδ. 피크 이동이 미미하였고, 이는 낮은 혼화성을 나타내는 이론적 분석 결과와 일치하였다. 탄화 후 PVDF계 혼합섬유는 길쭉한 형태의 기공구조를 보이는 반면, SAN계는 원형 기공구조를 가졌다. 이러한 기공구조의 차이는 두 희생용 고분자와 PAN 간의 혼화성 차이에 기인하였다.
Porous carbon nanofibers were prepared via electrospinning of polyacrylonitrile (PAN)-based blend solutions and effects of miscibility of the blended polymers on pore structure were investigated. Two sacrificial polymers, poly(vinylidene fluoride) (PVDF) and poly(styrene-co-acrylonitrile) (SAN), were chosen as a sacrificial component to yield porosity after carbonization. The miscibility of PAN with each sacrificial polymer was evaluated both theoretically and empirically. Analyzing solubility parameters revealed that PVDF had higher chemical affinity with PAN due to dipole-dipole interaction than SAN. Lower value of Flory-Huggins interaction parameter of PAN with PVDF (0.52) than with SAN (1.19) quantitatively confirmed the better miscibility of PAN-PVDF. In dynamic mechanical analysis of PAN/ PVDF blend films, individual loss tangent (tan δ) peaks (i.e., glass transition peak) for PAN and PVDF were observed but they were shifted to each other, indicating partial miscibility. In PAN/SAN films, however, the peak shift of PAN was negligible. These results coincided well with the theoretical analysis. After carbonization, the blend nanofibers exhibited high porosity with different pore structures; elongated shape for PVDF and round shape for SAN system. The pore structure discrepancy in the two systems was ascribed to the miscibility difference of each sacrificial polymer with PAN matrix.
  1. Miyawaki J, Shimohara T, Shirahama N, Yasutake A, Yoshikawa M, Mochida I, Yoon SH, Appl. Catal. B: Environ., 110, 273 (2011)
  2. Peng M, Li DS, Shen L, Chen Y, Zheng Q, Wang HJ, Langmuir, 22(22), 9368 (2006)
  3. Yamashita J, Shioya M, Kikutani T, Hashimoto T, Carbon, 39, 207 (2001)
  4. Yang Y, Centrone A, Chen L, Simeon F, Hatton TA, Rutledge GC, Carbon, 49, 3395 (2011)
  5. Jang J, Bae J, Sens. Actuators B-Chem., 122, 7 (2007)
  6. Li L, Li J, Lukehart CM, Sens. Actuators B-Chem., 130, 783 (2008)
  7. Lee BS, Son SB, Park KM, Seo JH, Lee SH, Choi IS, Oh KH, Yu WR, J. Power Sources, 206, 267 (2012)
  8. Ji L, Lin Z, Medford AJ, Zhang X, Carbon, 47, 3346 (2009)
  9. El-Merraoui M, Aoshima M, Kaneko K, Langmuir, 16(9), 4300 (2000)
  10. Lee KJ, Shiratori N, Lee GH, Miyawaki J, Mochida I, Yoon SH, Jang J, Carbon, 48, 4248 (2010)
  11. Inagaki M, Konno H, Tanaike O, J. Power Sources, 195(24), 7880 (2010)
  12. Yoon SH, Lim S, Song Y, Ota Y, Qiao W, Tanaka A, Mochida I, Carbon, 42, 1723 (2004)
  13. Villar-Rodil S, Suarez-Garcia F, Paredes J, Martinez-Alonso A, Tascon J, Chem. Mater, 17, 5893 (2005)
  14. Im JS, Park SJ, Kim TJ, Kim YH, Lee YS, J. Colloid Interface Sci., 318, 42 (2008)
  15. Wang P, Zhang D, Ma F Ou Y, Chen QN, Xie S, Li J, Nanoscale, 4, 7199 (2012)
  16. Kim BH, Yang KS, Electrochim. Acta, 88, 597 (2013)
  17. Kim SY, Kim BH, Yang KS, Mater. Lett., 87, 157 (2012)
  18. Tran C, Kalra V, J. Power Sources, 235, 289 (2013)
  19. Zhang L, Hsieh YL, Eur. Polym. J., 45, 47 (2009)
  20. Park SA, Eom Y, Jeon H, Koo JM, Lee ES, Jegal J, Hwang SY, Oh DX, Park J, Green Chem., 21, 5212 (2019)
  21. Schneier B, J. Polym. SCi. Pol. Lett., 10, 245 (1972)
  22. Eom Y, Ju H, Park Y, Chae DW, Jung YM, Kim BC, Chae HG, Polymer, 205, 122697 (2020)
  23. Coleman MM, Serman CJ, Bhagwagar DE, Painter PC, Polymer, 31, 1187 (1990)
  24. David D, Sincock T, Polymer, 33, 4505 (1992)
  25. Zhong GJ, Zhang LF, Su R, Wang K, Fong H, Zhu L, Polymer, 52(10), 2228 (2011)
  26. Liu TY, Lin WC, Huang LY, Chen SY, Yang MC, Polym. Adv. Technol., 16, 413 (2005)
  27. Yin XL, Cheng HB, Wang X, Yao YX, J. Membr. Sci., 146(2), 179 (1998)
  28. Zhou W, He J, Cui S, Gao W, Fibers Polym., 12, 431 (2011)
  29. Zhijiang C, Yi X, Haizheng Y, Jia J, Liu Y, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 58, 757 (2016)
  30. Duan Q, Wang B, Wang H, J. Macromol. Sci. B, 51, 2428 (2012)