Polymer(Korea), Vol.45, No.2, 253-260, March, 2021
용액 침전법에 의한 SLS 3-D 프린팅용 폴리프로필렌 파우더 개발
Development of Polypropylene Powder for SLS 3-D Printing by Solution Precipitation Method
E-mail:
초록
폴리프로필렌/폴리에틸렌(PP/PE) 공중합체를 용액 침전법에 의하여 selective laser sintering(SLS) 3-D 프린팅이 가능한 분말로 제조 후, 이를 상업용 SLS 3-D 프린팅용 폴리프로필렌(PP) 분말에 바인더로 사용하였다. 첨가된 PP/PE 공중합체 분말이 상업용 PP 분말의 흐름특성과 SLS 3-D 프린팅 가공 윈도우에 미치는 영향을 살펴보았다. 제조된 PP/PE 공중합체 분말은 구형으로 만들어져 상업용 PP 분말의 흐름특성을 향상시켜 SLS 3-D 프린팅용 분말 recoating 특성이 개선됨을 알 수 있었다. PP/PE 공중합체의 낮은 용융온도와 냉결정화온도는 PP/PE 공중합체 분말이 바인더로 낮은 온도에서 상업용 PP 분말 융착을 가능하게 하여 융착 후 냉각 과정 중 발생하는 융착층의 치수변형을 최소화할 수 있어 recoating 공정 개선효과를 예측할 수 있다.
Polypropylene/polyethylene (PP/PE) copolymer powder was successfully prepared by solution precipitation method and it was introduced as a binder for sintering commercial PP powder for selective laser sintering (SLS) 3-D printing. Effects of PP/PE copolymer powder on flowability and operation window of SLS 3-D printing were investigated. It was found that PP/PE copolymer powder showed a spherical shape and this resulted in good flowability with the mixing of commercial PP powder. Due to the low melting temperature and cold crystallization temperature of PP/ PE copolymer powder, it may be used as a binder for commercial PP powder to sinter at lower temperature during SLS 3-D printing. Since commercial PP powder can be printed at relatively low processing temperature with the aid of PP/ PE copolymer, the enhancement of dimensional stability in sintered layer was achieved and this could translate into a better powder recoating process in continuous sintering process.
Keywords:selective laser sintering 3-D printing;sintering;flowability;PP/PE copolymer powder;dimensional stability
- Shofner ML, Lozano K, Rodriguez-Macias FJ, Barrera EV, J. Appl. Polym. Sci., 89(11), 3081 (2003)
- Carneiro OS, Silva AF, Gomes R, Mater. Des., 83, 768 (2015)
- Lan P, Chou S, Chen L, Gemmill D, Comput. Aided Des., 29, 53 (1997)
- Nizam A, Gopai RN, Naing L, Hakim AB, Samsudin AR, Arch. Orofac. Sci., 1, 60 (2006)
- Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M, Rapid Prototyp. J., 11, 26 (2005)
- Kruth J, Wang X, Laoui T, Froyen L, Assem. Autom., 23, 357 (2003)
- Park JB, Lee DH, Kang HJ, Polym. Korea, 42(5), 747 (2018)
- Wang S, Liu J, Chu L, Zou H, Zhang S, Wu C, Polym. Phys., 55, 320 (2017)
- Hollahan JL, US Patent 0039135 A1, 2019.
- Santomaso A, Lazzaro P, Canu P, Chem. Eng. Sci., 58(13), 2857 (2003)
- Wang R, Wang L, Zhao L, Liu Z, Inter. J. Adv. Manuf. Tech., 33, 498 (2007)
- Zarringhalam H, Hopkinson N, Kamperman NF, de Vlieger JJ, Mat. Sci. Eng., 435, 172 (2006)
- Ziemian C, Sharma M, Ziemian S, Mechanical Engineering; In Tech: Croatia, pp.159 2012.
- Zhu W, Yan C, Shi Y, Wen S, Han C, Cai C, Liu J, Shi Y, Rapid Prototyp. J., 22, 621 (2016)
- Mys N, Haverans T, Verberckmoes A, Cardon L, Polymers, 8, 383 (2016)
- Berretta S, Evans KE, Ghita O, Eur. Polym., 68, 243 (2015)
- Tang X, Qin Y, Xu X, Guo D, Ye W, Wu W, Li R, BioMed Res. Inter. 2019, 2019, 207613 (2019)
- Lebrun P, Krier F, Mantanus J, Grohganz H, Yang M, Evard B, Rantanen J, Hubert P, Eur. J. Pharm. Biopharm., 80, 226 (2012)
- Anestiev LA, Froyen L, J. Appl. Phys., 1999, 86 (4008)
- Park JB, Kang HJ, Polym. Korea., 42, 931 (2018)
- ASTM, B527-93. 1993: Standard Test Method for Determination of Tap Density of Metallic Powders and Compounds, West Conshohocken, PA: ASTM.