화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.96, 194-201, April, 2021
Ionic polymer.metal composite actuators driven by methylammonium formate for high-voltage and long-term operation
E-mail:,
Ionic liquids (ILs) have been exploited as the internal solvent in the development of ionic polymer.metal composite (IPMC) actuators capable of long-term operation. However, a major issue is that most IPMCs impregnated with conventional ILs are yet to be practically applied due to insufficient actuation performance. Herein, methylammonium formate (MAF), an IL with low viscosity, small ionic size, high ionic conductivity, and excellent electrochemical stability, is introduced as a new internal solvent for IPMCs to achieve both excellent operation characteristics and long-term stability. The actuation characteristics of a series of IPMCs impregnated with four types of ILs, including MAF, were analyzed. The MAF-based IPMCs had more than twice the displacement and three-fold higher blocking forces compared with other IL-based IPMCs. Moreover, unlike conventional water-driven IPMCs, the MAFdriven IPMCs operated even at high voltages (4 V) without solvent loss and electrolysis. Their initial displacement remained above 81% even after operating for 2160 cycles (6 h). This simple change of media in IPMC actuators is expected to advance the design of IPMCs with improved displacement, force generation, and stability.
  1. Shahinpoor M, Bar-Cohen Y, Simpson J, Smith J, Smart Mater. Struct., 7, R15 (1998)
  2. Shahinpoor M, Kim KJ, Smart Mater. Struct., 10, 819 (2001)
  3. Kim KJ, Shahinpoor M, Smart Mater. Struct., 12, 65 (2003)
  4. Nemat-Nasser S, Li JY, J. Appl. Phys., 87, 3321 (2000)
  5. Park JH, Han MJ, Song DS, Jho JY, ACS Appl. Mater. Interfaces, 6, 22847 (2014)
  6. Wang HS, Cho J, Song DS, Jang JH, Jho JY, Park JH, ACS Appl. Mater. Interfaces, 9, 21998 (2017)
  7. Lee J, Vinh KN, Park S, Yoo Y, J. Korean Phys. Soc., 48, 1594 (2006)
  8. Park JH, Lee SW, Song DS, Jho JY, ACS Appl. Mater. Interfaces, 7, 16659 (2015)
  9. Kim SJ, Lee IT, Kim YH, Smart Mater. Struct., 16, N6 (2007)
  10. Bar-Cohen Y, Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, SPIE, 2001.
  11. Mousavi MSS, Alaei A, Hasani M, Kolahdouz M, Manteghi F, Ataei F, Mater. Res. Express, 6, 035312 (2018)
  12. Lei H, Li W, Tan X, Sens. Actuators A-Phys., 217, 1 (2014)
  13. Kim SJ, Lee IT, Lee HY, Kim YH, Smart Mater. Struct., 15, 1540 (2006)
  14. Franklin JW, Electromechanical Modeling of Encapsulated Ionic Polymer Transducers, Virginia Tech, 2003.
  15. Barramba J, Silva J, Branco PC, Sens. Actuators A-Phys., 140, 232 (2007)
  16. Sharma AK, Yasuda H, J. Vac. Sci. Technol., 21, 994 (1982)
  17. Akle BJ, Bennett MD, Leo DJ, Wiles KB, McGrath JE, J. Mater. Sci., 42(16), 7031 (2007)
  18. Nemat-Nasser S, Zamani S, Ethylene Glycol as Solvent, SPIE, 2003.
  19. Nemat-Nasser S, Zamani S, Tor Y, J. Appl. Phys., 99, 104902 (2006)
  20. Sutto TE, Hugh C, Trulove PC, Zeitschrift fur Naturforschung A, 57, 839 (2002)
  21. McEwen AB, Ngo HL, LeCompte K, Goldman JL, J. Electrochem. Soc., 146(5), 1687 (1999)
  22. Bennett MD, Leo DJ, Sens. Actuators A-Phys., 115, 79 (2004)
  23. De Luca V, Digiamberardino P, Di Pasquale G, Graziani S, Pollicino A, Umana E, Xibilia MG, J. Polym. Sci. B: Polym. Phys., 51(9), 699 (2013)
  24. Lee JY, Wang HS, Yoon BR, Han MJ, Jho JY, Macromol. Rapid Commun., 31(21), 1897 (2010)
  25. Bennett M, Leo D, Morphological and Electromechanical Characterization of Ionic Liquid/Nafion Polymer Composites, SPIE, 2005.
  26. Wang J, Xu C, Taya M, Kuga Y, Smart Mater. Struct., 16, S214 (2007)
  27. Shen Y, Kennedy DF, Greaves TL, Weerawardena A, Mulder RJ, Kirby N, Song G, Drummond CJ, Phys. Chem. Chem. Phys., 14, 7981 (2012)
  28. Grossman S, Danielson ND, J. Chromatogr. A, 1216, 3578 (2009)
  29. Li J, Wilmsmeyer KG, Hou J, Madsen LA, Soft Matter, 5, 2596 (2009)
  30. Stejskal EO, Tanner JE, J. Chem. Phys., 42, 288 (1965)
  31. Mousavi MP, Wilson BE, Kashefolgheta S, Anderson EL, He S, Buhlmann P, Stein A, ACS Appl. Mater. Interfaces, 8, 3396 (2016)
  32. Greaves TL, Weerawardena A, Fong C, Krodkiewska I, Drummond CJ, J. Phys. Chem. B, 110(45), 22479 (2006)
  33. Zarrougui R, Dhahbi M, Lemordan D, J. Electroanal. Chem., 717, 189 (2014)
  34. Kikuchi K, Tsuchitani S, J. Appl. Phys., 106, 053519 (2009)
  35. Bennett MD, Leo DJ, Wilkes GL, Beyer FL, Pechar TW, Polymer, 47(19), 6782 (2006)
  36. Guo D, Han Y, Huang J, Meng E, Ma L, Zhang H, Ding Y, ACS Appl. Mater. Interfaces, 11, 2386 (2019)
  37. Gierke TD, Munn G, Wilson F, J. Polym. Sci. Polym. Phys. Ed., 19, 1687 (1981)
  38. Ue M, Murakami A, Nakamura S, J. Electrochem. Soc., 149(10), A1385 (2002)
  39. Akle BJ, Bennett MD, Leo DJ, Sens. Actuators A-Phys., 126, 173 (2006)
  40. Han MJ, Park JH, Lee JY, Jho JY, Macromol. Rapid Commun., 27(3), 219 (2006)
  41. Lee JY, Wang HS, Han MJ, Cha GC, Jung SH, Lee S, Jho JY, Macromol. Res., 19(10), 1014 (2011)
  42. Lee JH, Lee JH, Nam JD, Choi H, Jung K, Jeon JW, Lee YK, Kim KJ, Tak Y, Sens. Actuators A-Phys., 118, 98 (2005)
  43. Jeong HM, Woo SM, Lee S, Cha GC, Mun MS, J. Appl. Polym. Sci., 99(4), 1732 (2006)
  44. Lee SG, Park HC, Pandita SD, Yoo Y, Int. J. Control, 4, 748 (2006)
  45. Noda A, Hayamizu K, Watanabe M, J. Phys. Chem. B, 105(20), 4603 (2001)
  46. Liu Y, Liu S, Lin J, Wang D, Jain V, Montazami R, Heflin JR, Li J, Madsen L, Zhang QM, Appl. Phys. Lett., 96, 223503 (2010)