화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.96, 307-314, April, 2021
Facile and scalable functionalization of carbon nanofibers for oxygen reduction reaction: Role of nitrogen precursor and non-ionic dispersant
E-mail:,
The surface modification of carbon nanomaterials with heteroatoms improves their electrocatalytic activity for oxygen reduction reaction (ORR). The present work reports the surface modification of carbon nanofiber (CNF) with poly(diallyldimethylammonium) chloride (PDDA) and Triton X-100. PDDA behaves as an electron-acceptor, and the intermolecular charge transfer from CNF to PDDA creates delocalized positive charge sites at the edge and basal plane sites of CNF. Triton X-100 disperses CNF, but also acts as a masking agent to obstruct the intermolecular charge transfer between CNF and PDDA. The surface modification of CNF with (PDDA + Triton X-100) is characterized in terms of FESEM, TEM, EDX, Raman, FTIR and TGA. The electrocatalytic activity of the conjugated systems (CNF + PDDA and CNF + Triton X-100+PDDA) is investigated in terms of cyclic voltammetry and linear sweep voltammetry. The reduction of oxygen at PDDA-CNF occurs via a more efficient four-electron (n = 3.9) pathway in 0.1 M KOH and exhibits a limiting diffusion current density of 3.23 mA cm-2, which is closer to the Pt/C electrode (3.41 mA cm-2). PDDA-CNF even outperforms PDDA-CNT or graphene for the ORR performance owing to their special morphological features. This study thus provides a facile and viable strategy for the scalable production of CNF based ORR electrocatalysts.
  1. Bing Y, Liu H, Zhang L, Ghosh D, Zhang J, Chem. Soc. Rev., 39, 2184 (2010)
  2. Jayaraman T, Murthy AP, Elakkiya V, Chandrasekaran S, Nithyadharseni P, Khan Z, Senthil RA, Shanker R, Raghavender M, Kuppusami P, Jagannathan M, Ashokkumar M, J. Ind. Eng. Chem., 64, 16 (2018)
  3. Greeley J, Stephens IE, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff IN, Nørskov JK, Nat. Chem., 1, 552 (2009)
  4. Lim T, Kim OH, Sung YE, Kim HJ, Lee HN, Cho YH, Kwon OJ, J. Power Sources, 316, 124 (2016)
  5. Kaur P, Verma G, Sekhon SS, Prog. Mater. Sci., 102, 1 (2019)
  6. Liu J, Choi HJ, Meng LY, J. Ind. Eng. Chem., 64, 1 (2018)
  7. Lee S, Lee YW, Kwak DH, Lee JY, Han SB, Sohn JI, Park KW, J. Ind. Eng. Chem., 43, 170 (2016)
  8. Shim Y, Han J, Sa YJ, Lee S, Choi K, Oh J, Kim S, Joo SH, Park S, J. Ind. Eng. Chem., 42, 149 (2016)
  9. Ciric-Marjanovic G, Pasti I, Mentus S, Prog. Mater. Sci., 69, 61 (2015)
  10. Raghubanshi H, Dikio ED, Naidoo EB, J. Ind. Eng. Chem., 44, 23 (2016)
  11. Zhong RS, Qin YH, Niu DF, Tian JW, Zhang XS, Zhou XG, Sun SG, Yuan WK, J. Power Sources, 225, 192 (2013)
  12. Maldonado S, Stevenson KJ, J. Phys. Chem. B, 109, 4707 (2005)
  13. Yin J, Qiu Y, Yu J, Zhou X, Wu W, RSC Adv., 3(36), 15655 (2013)
  14. Li R, Shao X, Li S, Cheng P, Hu Z, Yuan D, Nanotechnology, 27, 505402 (2016)
  15. Qiu YJ, Yu J, Shi TN, Zhou XS, Bai XD, Huang JY, J. Power Sources, 196(23), 9862 (2011)
  16. Wang SG, Dai CL, Li JP, Zhao L, Ren ZH, Ren YQ, Qiu YJ, Yu J, Int. J. Hydrog. Energy, 40(13), 4673 (2015)
  17. Massaglia G, Margaria V, Sacco A, Castellino M, Chiodoni A, Pirri FC, Quaglio M, Int. J. Hydrog. Energy, 44(9), 4442 (2019)
  18. Chen Y, Liu Q, Wang J, Nano Adv., 1, 79 (2016)
  19. Sun M, Xie ZY, Li ZQ, Deng XT, Huang QZ, Li ZJ, Int. J. Hydrog. Energy, 44(45), 24617 (2019)
  20. Qiu Y, Yu J, Wu W, Yin J, Bai X, J. Solid State Electr., 17, 565 (2013)
  21. Wang Z, Li MA, Fan LQ, Han JA, Xiong YP, Appl. Surf. Sci., 401, 89 (2017)
  22. Yan X, Liu K, Wang X, Wang T, Luo J, Zhu J, Nanotechnology, 26, 165401 (2015)
  23. Wu N, Wang Y, Lei Y, Wang B, Han C, Gou Y, Shi Q, Fang D, Sci. Rep-UK., 5, 17396 (2015)
  24. Yoon KR, Choi J, Cho SH, Jung JW, Kim C, Cheong JY, Kim ID, J. Power Sources, 380, 174 (2018)
  25. Shang C, Li M, Wang Z, Wu S, Lu Z, ChemElectroChem, 3, 1437 (2016)
  26. Surendran S, Shanmugapriya S, Sivanantham A, Shanmugam S, Kalai Selvan R, Adv. Eng. Mater., 8, 180055 (2018)
  27. Kim B, Park H, Sigmund WM, Langmuir, 19(6), 2525 (2003)
  28. Ji JY, Ro SI, Kwon YC, J. Ind. Eng. Chem., 87, 242 (2020)
  29. Yang DQ, Rochette JF, Sacher E, J. Phys. Chem. B, 109(10), 4481 (2005)
  30. Kaur P, Shin MS, Park JS, Verma G, Sekhon SS, Int. J. Hydrog. Energy, 43(13), 6575 (2018)
  31. WAng S, Jiang SP, Wnag X, Nanotechnology, 19, 265601 (2008)
  32. Wang SY, Yu DS, Dai LM, J. Am. Chem. Soc., 133(14), 5182 (2011)
  33. Wang S, Yu D, Dai L, Chang DW, Baek JB, ACS Nano, 5, 6202 (2011)
  34. Song J, Kang SW, Lee YW, Park Y, Kim JH, Han SW, ACS Appl. Mater. Inter., 9, 1692 (2017)
  35. Azwar E, Mahari WAW, Chuah JH, Vo DVN, Ma NL, Lam WH, Lam SS, Int. J. Hydrog. Energy, 43(45), 20811 (2018)
  36. Zhou H, Zhang J, Amiinu IS, Zhang C, Liu X, Tu W, Pan M, Mu S, Phys. Chem. Chem. Phys., 18, 10392 (2016)
  37. Kaur P, Shin MS, Chae SR, Kang MS, Park JS, Sekhon SS, J. Phys. Chem. Solids, 85, 155 (2015)
  38. Turan K, Kaur P, Manhas D, Sharma J, Verma G, Mater. Chem. Phys., 239 (2020).
  39. Rastogi R, Kaushal R, Tripathi SK, Sharma AL, Kaur I, Bharadwaj LM, J. Colloid Interface Sci., 328(2), 421 (2008)
  40. Landis EC, Klein CL, Liao A, Pop E, Hensley DK, Melechko AV, Hamers RJ, Chem., Mater., 22, 2357 (2010)
  41. Sekhon SS, Park JS, Cho E, Yoon YG, Kim CS, Lee WY, Macromolecules, 42(6), 2054 (2009)
  42. Bellamy LJ, The Infra-red Spectra of Complex Molecules, John Wiley & Sons, New York, pp.350 1958.
  43. Chu X, Kinoshita K, Mater. Sci. Eng. B, 49, 53 (1997)
  44. Muthuswamy N, Buan MEM, Walmsley JC, Ronning M, Catal. Today, 301, 11 (2018)
  45. Buan ME, Muthuswamy N, Walmsley JC, Chen D, Rønning M, Chem-CatChem, 9, 1663 (2017)
  46. Kattel S, Atanassov P, Kiefer B, J. Mater. Chem. A, 2, 10273 (2014)