Applied Biochemistry and Biotechnology, Vol.191, No.2, 763-771, 2020
Biosynthesis of a Phycocyanin Beta Subunit with Two Noncognate Chromophores in Escherichia coli
Recombinant phycobiliprotein can be used as fluorescent label in immunofluorescence assay. In this study, pathway for phycocyanin beta subunit (CpcB) carrying noncognate chromophore phycoerythrobilin (PEB) and phycourobilin (PUB) was constructed in Escherichia coli. Lyase CpcS and CpcT could catalyze attachment of PEB to Cys84-CpcB and Cys155-CpcB, respectively. However, PEB was attached only to Cys84-CpcB when both CpcS and CpcT were present in E. coli. A dual plasmid expression system was used to control the expression of lyases and the attachment order of PEB to CpcB. The production of PEB-Cys155-CpcB was achieved by L-arabinose-induced expression of CpcS, CpcB, Ho1, and PebS, and then the attachment of PEB to Cys84-CpcB was achieved by IPTG-induced expression of CpcS. The doubly chromophorylated CpcB absorbed light maximally at 497.5 nm and 557.0 nm and fluoresced maximally at 507.5 nm and 566.5 nm. An amount of light energy absorbed by PUB-Cys155-CpcB is transferred to PEB-Cys84-CpcB in doubly chromophorylated CpcB, conferring a large stokes shift of 69 nm for this fluorescent protein. There are interactions between chromophores of CpcB which possibly together with the help of lyases lead to isomerization of PEB-Cys155-CpcB to PUB-Cys155-CpcB.