화학공학소재연구정보센터
Applied Mathematics and Optimization, Vol.82, No.3, 1017-1048, 2020
On the Robust PCA and Weiszfeld's Algorithm
The principal component analysis (PCA) is a powerful standard tool for reducing the dimensionality of data. Unfortunately, it is sensitive to outliers so that various robust PCA variants were proposed in the literature. This paper addresses the robust PCA by successively determining the directions of lines having minimal Euclidean distances from the data points. The corresponding energy functional is non-differentiable at a finite number of directions which we call anchor directions. We derive a Weiszfeld-like algorithm for minimizing the energy functional which has several advantages over existing algorithms. Special attention is paid to carefully handling the anchor directions, where the relation between local minima and one-sided derivatives of Lipschitz continuous functions on submanifolds of Rd is taken into account. Using ideas for stabilizing the classical Weiszfeld algorithm at anchor points and the Kurdyka-Lojasiewicz property of the energy functional, we prove global convergence of the whole sequence of iterates generated by the algorithm to a critical point of the energy functional. Numerical examples demonstrate the very good performance of our algorithm.