Applied Microbiology and Biotechnology, Vol.105, No.1, 147-168, 2021
In vitro and in silico evaluation of the inhibitory effect of a curcumin-based oxovanadium (IV) complex on alkaline phosphatase activity and bacterial biofilm formation
The scientific interest in the development of novel metal-based compounds as inhibitors of bacterial biofilm-related infections and alkaline phosphatase (ALP) deregulating effects is continuous and rising. In the current study, a novel crystallographically defined heteroleptic V(IV)-curcumin-bipyridine (V-Cur) complex with proven bio-activity was studied as a potential inhibitor of ALP activity and bacterial biofilm. The inhibitory effect of V-Cur was evaluated on bovine ALP, with two different substrates: para-nitrophenyl phosphate (pNPP) and adenosine triphosphate (ATP). The obtained results suggested that V-Cur inhibited the ALP activity in a dose-dependent manner (IC50 = 26.91 +/- 1.61 mu M for ATP, IC50 = 2.42 +/- 0.12 mu M for pNPP) exhibiting a mixed/competitive type of inhibition with both substrates tested. The evaluation of the potential V-Cur inhibitory effect on bacterial biofilm formation was performed on Gram (+) bacteria Staphylococcus aureus (S. aureus) and Gram (-) Escherichia coli (E. coli) cultures, and it positively correlated with inhibition of bacterial ALP activity. In silico study proved the binding of V-Cur at eukaryotic and bacterial ALP, and its interaction with crucial amino acids of the active sites, verifying complex's inhibitory potential. The findings suggested a specific anti-biofilm activity of V-Cur, offering a further dimension in the importance of metal complexes, with naturally derived products as biological ligands, as therapeutic agents against bacterial infections and ALP-associated diseases.
Keywords:Alkaline phosphatase;Oxovanadium complex;Curcumin;Bacterial biofilm;Escherichia coli;Staphylococcus aureus