화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.532, No.4, 528-534, 2020
Characterization of the rat Acetylcholinesterase readthrough (AChE-R) splice variant: Implications for toxicological studies
Exposure to chemicals and other environmental stressors can differentially impact the expression of Acetylcholinesterase (AChE) splice variants. Surprisingly, despite the widespread use of the rat model in toxicological studies and the wealth of literature on this important biomarker of neurotoxicity, AChE coding exons and splice variants are not yet fully annotated in this species. To address this knowledge gap, a short problematic region of the rat AChE genomic DNA present in GenBank was first re-sequenced. This revised genomic sequence was then aligned to rat AChE RefSeq mRNA and compared to orthologous mammalian sequences, in order to map the coding exon and intron boundaries of the rat AChE gene. Based on these bioinformatics analyses, a sequence was predicted for the yet-unannotated rat Acetylcholinesterase readthrough (AChE-R) splice variant. PCR primers designed to specifically amplify rat AChE-R were used to confirm its expression in rat PC12 cells. Compared to the canonical AChE-S splice variant, AChE-R was expressed at much lower levels but presented distinct regulation patterns in PC12 cells and rat primary cerebral granule cells (CGCs) following exposure to Chlorpyrifos (a well-known neurotoxic organophosphate pesticide). Taken together, these observations point to the evolutionary conservation of the AChE-R splicing event between rodents and human and to the distinct regulation of AChE splice variants in response to toxicological challenges. Crown Copyright (C) 2020 Published by Elsevier Inc.