Biochemical and Biophysical Research Communications, Vol.531, No.3, 328-334, 2020
CDK6 inhibition targeted by miR-378a-3p protects against intestinal injury induced by ionizing radiation
Radiotherapy combined with chemotherapy is a common modality in abdominal cancer treatment. However, intestinal syndrome induced by radiation is a main factor leading to the poor prognosis of radiotherapy. In this work, we found that miR-378a-3p was markedly up-regulated in the small intestines of mice after total abdominal irradiation. Knocking-down (or overexpression) of miR-378a-3p increased (or decreased) the radiosensitivity of the small intestine cells HIEC and FHs-74-Int. Comet assay and g-H2AX staining demonstrated that miR-378a-3p exerted its radioprotective function by reducing the accumulation of DNA damage in the cells and tissues of the small intestines. Mechanistically, miR-378a-3p could interact with the 30 UTR of CDK6 through complementary sequences and thus inhibited CDK6 expression in the small intestine cells. Rescue experiments suggested that the repression of miR-378a-3p overexpression on cell radiosensitivity and DNA damage accumulation was abrogated by the forced expression of CDK6. In summary, our results revealed for the first time that miR-378a-3p regulated the radiosensitivity and DNA damage response of small intestines by targeting CDK6. MiR-378a-3p may serve as a promising biomarker and radioprotective target in abdominal cancer. (C) 2020 Elsevier Inc. All rights reserved.