화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.531, No.2, 140-143, 2020
Lipid selectivity in detergent extraction from bilayers
Despite numerous studies on detergent-induced solubilization of membranes and on the underlying mechanisms associated with this process, very little is known regarding the selectivity of detergents for lipids during their extraction from membranes. To get insights about this phenomenon, solubilization of model bilayers prepared from binary lipid mixtures by different detergents was examined. Three commonly used detergents were used: the non-ionic Triton X-100 (TX), the negatively-charged sodium dodecylsulfate (SDS), and the positively-charged n-dodecyltrimethylammonium chloride (DTAC). Two model membranes were used in order to identify if specific intermolecular interactions can lead to lipid selectivity: bilayers made of a binary mixture of 1- palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), and of a binary mixture of POPC and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG). Therefore, it was possible to describe systems presenting a combination of detergents bearing different charges with bilayers with different polymorphic propensities and charge. In conditions for which partial solubilization was observed, the composition of the extracted lipid phase was quantified with Liquid Chromatography coupled to Mass Spectrometry to elucidate whether a lipid selectivity occurred in the solubilization process. On one hand, it is found that repulsive or attractive electrostatic interactions did not lead to any lipid selectivity. On the other hand, POPE was systematically less extracted than POPC, regardless of the detergent nature. We propose that this lipid selectivity is inherent to the molecular shape of POPE unsuited for micelles curvature properties. (C) 2020 Elsevier Inc. All rights reserved.