Biochemical and Biophysical Research Communications, Vol.529, No.4, 1011-1017, 2020
Superoxide-induced Type I collagen secretion depends on prolyl 4-hydroxylases
Reactive oxygen species (ROS) including superoxide (O-2(center dot-)) play an important role in a variety of diseases, including Alzheimer's Disease, cancer, and atherosclerosis. Early reports showed that O-2(center dot-) is a stimulant for collagen synthesis. However, the mechanism remains incompletely understood. Here we showed that LY83583 (6-anilinoquinoline-5,8-quinone), a substance known to induce O-2(center dot-) production by smooth muscle cell (SMC), increases Type I collagen secretion. This effect could be blocked by treating the cells with Tiron, a scavenger for O-2(center dot-). LY83583-induced Type I collagen secretion required P4HA1 and P4HA2. Knockout of either P4ha1 or P4ha2 greatly reduced LY83583-stimulated Type I collagen maturation whereas silencing of both P4ha1 and P4ha2 completely blocked LY83583-induced Type I collagen maturation. Although significantly more hydroxyproline on purified Type I collagen was detected from LY83583 treated mouse embryonic fibroblast (MEF) cells by mass spectrometry, the level of prolyl 4-hydroxylases was not altered. Thus, LY83583 might increase the enzymatic activity of prolyl 4hydroxylases to increase Type I collagen maturation. In addition, we found that LY83583 activated prolyl 4-hydrolases differed from ascorbate-activated prolyl 4-hydroxylase in two aspects: (1) LY83583 activated both P4HA1 and P4HA2 involved in collagen maturation whereas ascorbate mainly stimulated P4HA1 in collagen maturation; (2) LY83583 did not induce N259 glycosylation on P4HA1 as ascorbate did. The mechanisms remain to be investigated. (c) 2020 Elsevier Inc. All rights reserved.