화학공학소재연구정보센터
Biotechnology and Bioengineering, Vol.117, No.12, 3775-3784, 2020
Single-step purification of a small non-mAb biologic by peptide-ELP-based affinity precipitation
Affinity precipitation using stimulus-responsive biopolymers such as elastin-like polypeptides (ELPs) have been successfully employed for the purification of monoclonal antibodies. In the current work, we extend these studies to the development of an ELP-peptide fusion for the affinity precipitation of the therapeutically relevant small non-mAb biologic, AdP. A 12-mer affinity peptide ligand (P10) was identified by a primary phage biopanning followed by a secondary in-solution fluorescence polarization screen. Peptide P10 and AdP interacted with aK(D)of 19.5 mu M. A fusion of P10 with ELP was then shown to be successful in selectively capturing the biologic from a crude mixture. While pH shifts alone were not sufficient for product elution, the use of pH in concert with fluid-phase modifiers such as NaCl, arginine, or ethylene glycol was effective. In particular, the use of pH 8.5 and an arginine concentration of 500 mM enabled >80% product recovery. The overall process performance evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and reversed-phase ultra-performance liquid chromatography analyses indicated successful single-step purification of the biologic from anEscherichia colilysate resulting in similar to 90% purity and >80% recovery. These results demonstrate that phage display can be readily employed to identify a peptide ligand capable of successfully carrying out the purification of a non-antibody biological product using ELP-based affinity precipitation.