화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.4, 771-787, April, 2021
Combined effects of yaw and tilt angles of separated overfire air on the combustion characteristics in a 1,000 MW coal-fired boiler: A numerical study
E-mail:
Separated overfire air (SOFA) is typically employed in coal-fired boilers with air staged technology to sustain lower NOX emission, and SOFA nozzle angles are crucial adjustment parameters. In this work, the combined effects of SOFA yaw and tilt angles on combustion characteristics were numerically investigated for a 1,000MW dual circle tangentially coal-fired boiler. Numerical results show that the forward increase of the SOFA yaw angle from 0o brings about the enlarged SOFA tangential circle and the gradual appearance of bimodal high-temperature zones at furnace exit. With further tuning SOFA tilt angles vertically, the bimodal high-temperature zones would separate to the two halves of the furnace, inducing a more severe deviation of gas temperature. Besides, the gas residual rotating momentum is strengthened as SOFA yaw angles forward increase, resulting in the enhancement of traction effect in the upper furnace as well as the rise of flame. However, the gas velocity deviation is somewhat eliminated as SOFA rotates reversely. No matter that the SOFA yaw angle increases forward or reversely, the coal burnout would deteriorate with the overly enlarged SOFA tangential circles. Tuning SOFA yaw and tilt angles, respectively, at 5o and 0o can simultaneously guarantee lower CO and NOX emissions.
  1. Looney B, Statistical review of world energy 2020, London (2020).
  2. Gong J, Jin W, Xu Z, Huang B, Wang J, Wang C, Solar Energy, 199, 206 (2020)
  3. International energy outlook 2019, Washington (2019).
  4. Fan W, Chen J, Feng Z, Wu X, Liu S, Fuel, 265, 117007 (2020)
  5. Kobayashi H, Hayakawa AA, Somarathne KDKA, Okafor EC, P. Combust. Inst., 37, 109 (2019)
  6. Du X, Jin X, Zucker N, Kennedy R, Urpelainen J, J. Environ. Manage., 270, 110862 (2020)
  7. Zhu H, Che D, Liu M, He W, Yi G, Yan J, Appl. Therm. Eng., 159, 113801 (2019)
  8. Madejski P, Zymelka P, Energy, 197, 117221 (2020)
  9. Liu H, Xin N, Cao Q, Sha L, Sun D, Wu S, Korean J. Chem. Eng., 26, 1137 (2010)
  10. Zhang XH, Zhou J, Sun SZ, Sun R, Qin M, Fuel, 142, 215 (2015)
  11. Xu M, Yuan J, Ding S, Cao H, Comput. Method Appl. M., 155
  12. Yin C, Caillat S, Harion JL, Baudoin B, Perez E, Fuel, 81(8), 997 (2002)
  13. Yin CG, Rosendahl L, Condra TJ, Fuel, 82(9), 1127 (2003)
  14. Zhou Y, Xu T, Hui S, Zhang M, Appl. Therm. Eng., 29, 732 (2009)
  15. Tan P, Fang Q, Zhao S, Yin C, Zhang C, Zhao H, Chen G, Appl. Therm. Eng., 139, 135 (2018)
  16. Stupar G, Tucakovic D, Zivanovic T, Stevanovic Z, Belosevic S, Appl. Therm. Eng., 149, 665 (2019)
  17. Chen DG, Zhang Z, Li ZS, Lv Z, Cai NS, Combust. Flame, 194, 52 (2018)
  18. Kim KM, Ahn SG, Kim GB, Jeon CH, ACS Omega, 4, 2291 (2019)
  19. Park HY, Baek SH, Kim HH, Kim YJ, Kim TH, Lim HS, Kang DS, Fuel, 166, 509 (2016)
  20. Liu YC, Fan WD, Wu MZ, Appl. Therm. Eng., 110, 553 (2017)
  21. Liu YC, Fan WD, Li Y, Appl. Energy, 177, 323 (2016)
  22. Tan P, Tian DF, Fang QY, Ma L, Zhang C, Chen G, Zhong LJ, Zhang HG, Fuel, 196, 314 (2017)
  23. Tian DF, Zhong LJ, Tan P, Ma L, Fang QY, Zhang C, Zhang DP, Chen G, Fuel Process. Technol., 138, 616 (2015)
  24. Wu XF, Fan WD, Liu YC, Bian B, Energy, 173, 1006 (2019)
  25. Liu H, Sha L, Xu L, Xu Y, Wu W, Wu S, Numer. Heat Tr. A-Appl., 66, 816 (2014)
  26. Sha L, Liu H, Xu LF, Cao QX, Li Q, Wu SH, Energy, 46(1), 364 (2012)
  27. Zhao H, Shen J, Li Y, Bentsman J, Control Eng. Pract., 58, 127 (2017)
  28. Shih TH, Liou WW, Shabbir A, Yang ZG, Zhu J, Comput. Fluids, 24, 227 (1995)
  29. Ranade VV, Gupta DF, Computational modeling of pulverized coal fired boilers, CRC Press, New York (2015).
  30. Kobayashi H, Howard JB, Sarofim AF, Symp. Combust., 16, 411 (1977)
  31. Guo YC, Chan CK, Lau KS, Fuel, 82(8), 893 (2003)
  32. Sheng CD, Moghtaderi B, Gupta R, Wall TF, Fuel, 83(11-12), 1543 (2004)
  33. Sivathanu YR, Faeth GM, Combust. Flame, 82, 211 (1990)
  34. Jones WP, Whitelaw JH, Combust. Flame, 48, 1 (1982)
  35. Baum MM, Street PJ, Combust. Sci. Technol., 3, 231 (1971)
  36. Cheng P, AIAA J., 2, 1662 (1964)
  37. Backreedy RI, Fletcher LM, Ma L, Pourkashanian M, Williams A, Combust. Sci. Technol., 178(4), 763 (2006)
  38. Hill SC, Smoot LD, Prog. Energy Combust. Sci., 26, 417 (2000)
  39. Hanson RK, Salimian S, Combustion chemistry, Springer-Verlag New York Inc., New York (1984).
  40. Warnatz J, NOx formation in high temperature processes, University of Stuttart, Germany (1990).
  41. Westbrook C, Dryer F, Prog. Energy Comb. Sci., 10, 1 (1984)
  42. De Soete GG, Symp. Combust., 15, 1093 (1975)
  43. Winter F, Wartha C, Loffler G, Hofbauer H, Symp. Combust., 26, 3325 (1996)
  44. Levy JM, Chan LK, Sarofima AF, Beer JM, Symp. Combust., 18, 111 (1981)
  45. Ansys fluent user’s guide, Fluent Inc. (2012).
  46. Laubscher R, Rousseau P, Int. J. Heat Mass Transfer, 137, 506 (2019)
  47. Modlinski N, Fuel Process. Technol., 91(11), 1601 (2010)
  48. Li ZX, Miao ZQ, Shen XS, Li JT, Energy, 165, 825 (2018)
  49. Li ZX, Miao ZQ, Zhou Y, Wen SR, Li JT, Energy, 152, 804 (2018)
  50. Qin M, Su H, Wu W, Liu H, Wu S, Cao Q, Combust. Sci. Technol., 192, 289 (2019)
  51. Kutne P, Kapadia BK, Meier W, Aigner M, P. Combust. Inst., 33, 3383 (2011)
  52. Mulvihill CR, Petersen EL, Combust. Flame, 213, 291 (2020)