화학공학소재연구정보센터
Clean Technology, Vol.27, No.1, 61-68, March, 2021
석탄화력 발전소 탈질설비의 암모니아 분사시스템 설계를 위한 CFD 기법 적용에 관한 연구
Application of CFD to Design Procedure of Ammonia Injection System in DeNOx Facilities in a Coal-Fired Power Plant
E-mail:
초록
선택적 촉매 혼합법은 대용량의 화력 발전시스템에서 질소산화물을 제거하는 방법으로 많이 사용되고 있다. 분사된 암모니아와 유입된 배기가스의 균일한 혼합은 촉매 층에서의 탈질 환원 과정에서 매우 중요하다. 본 연구에서는 탈질설비의 암모니아 분사시스템 설계과정에 전산해석 기법을 적용하였다. 적용 모델은 현재 가동되고 있는 800 MW급 석탄 화력 발전소의 탈질설비이다. 유동 해석 범위는 암모니아 분사 시스템 입구에서 촉매 층 후단부이다. 2차원 유동장을 선택하였고 비압축성으로 가정하였다. 상용 소프트웨어인 ANSYS-Fluent를 사용하여 정상 상태의 난류 유동을 해석하였다. 설계 변수로는 암모니아 분사 시스템에서의 노즐 배치 간극과 분사 유량으로 4가지 경우에 대해 결과를 분석하였다. 촉매 층 입구에서의 몰 비에 의한 평균제곱근오차 값을 최적화 변수로 선정하였고 실험계획법을 기반으로 한 최적화 알고리즘을 도입하였다. 노즐 피치와 유량을 동시에 조절한 경우가 유동 균일성 관점에서 가장 우수하였다.
Selective catalytic reduction (SCR) is widely used as a method of removing nitrogen oxide in large-capacity thermal power generation systems. Uniform mixing of the injected ammonia and the inlet flue gas is very important to the performance of the denitrification reduction process in the catalyst bed. In the present study, a computational analysis technique was applied to the ammonia injection system design process of a denitrification facility. The applied model is the denitrification facility of an 800 MW class coal-fired power plant currently in operation. The flow field to be solved ranges from the inlet of the ammonia injection system to the end of the catalyst bed. The flow was analyzed in the two-dimensional domain assuming incompressible. The steady-state turbulent flow was solved with the commercial software named ANSYS-Fluent. The nozzle arrangement gap and injection flow rate in the ammonia injection system were chosen as the design parameters. A total of four (4) cases were simulated and compared. The root mean square of the NH3/NO molar ratio at the inlet of the catalyst layer was chosen as the optimization parameter and the design of the experiment was used as the base of the optimization algorithm. The case where the nozzle pitch and flow rate were adjusted at the same time was the best in terms of flow uniformity.
  1. Seo DC, Kim MK, Chung HT, Clean Technol., 25(4), 324 (2019)
  2. Zhao D, Sheng H, Zheng, Int’l Conf. on Machinery. Matericals and Computing Technology, Hangzhou (Mar. 2016).
  3. Lee CS, Kim MG, Chung HT, J. Compt. Fluids Eng., 25(1), 13 (2020)
  4. Hwang WH, Lee KG, Journal of The Korea Society of Computer and Information., 22(1), 63-69 (2017).
  5. Zhu T, Li D, Fang Q, Chen G, J. Chin. Soc. Power Eng., 35(6), 481 (2015)
  6. Ha JS, Kim TK, J. Nakdonggang Environ. Res. Inst., 15(1), 262 (2011)
  7. Lee IY, Kim DW, Lee JB, Yoo kO, J. Korea Soc. Atmos. Environ., 17(4), 347 (2001)
  8. Yu H, Zhou N, Wang Z, Li C, He F, Qu L, et al., IOP Conference Series: Earth and Environmental Science, 310(3). 032052. Guiyang (Aug. 2019).
  9. Jang YW, Yoo HS, Journal of the Korean Institute of Plant Engineering & Construction, 18(1), 91-98 (2019).
  10. Kim KS, Lee KG, J. Environ. Sci. Int., 22(11), 1481 (2013)
  11. Park SM, Chang HS, Zhao T, J. Korean Soc. Environ.Eng., 33(5), 368 (2011)
  12. Buzanowski M, Fadda D, Proc. ASME Power Conf., Texas (Jan. 2007).
  13. Chung HT, Seo DC, Kim BS, Kim MG, Proc. 30th ISTP, Halongbay (Nov. 2019).
  14. Kim MG, Chung HT, J. Comput. Fluids Eng., 25, 91 (2020)
  15. Lei S, Master Thesis, Nanjing University of Science & Technology, Nanjing (2018).
  16. ANSYS, ANSYS FLUENT 2019 R1 User’s Guide, ANSYS inc. (2019).
  17. ANSYS, ANSYS Workbench-Mechanical Optimization Guide, ANSYS inc. (2019).