화학공학소재연구정보센터
Clean Technology, Vol.27, No.1, 79-84, March, 2021
원통형 활성탄 카트리지 내 폐활성탄의 휘발성 유기화합물 저온 탈착 특성
Characteristics of Low Temperature Desorption of Volatile Organic Compounds from Waste Activated Carbon in Cylindrical Cartridge
E-mail:
초록
본 연구에서는 도장 공정에서 사용된 폐활성탄을 원통형 카트리지에 충진하여 저온 가스에 의한 탈착 특성을 파악하였다. 폐활성탄의 탈착유량을 결정하기 위하여 활성탄의 톨루엔 흡착 및 탈착 실험을 진행하였다. 실험결과에서 1, 2, 4 m3 min-1의 유량으로 탈착을 하였을 때 높은 THC 농도와 탈착시간에 의하여 2 m3 min-1이 적절하다고 판단하였다. 폐활성탄은 탈착시간 초기에 가스성분에서 비점이 낮은 2-butanone과 MIBK (methyl isobutyl ketone)가 높은 비율로 발생되었고, 그 이후에는 THC 의 농도가 감소하면서 BTX계열이 상대적으로 높은 비율로 탈착되었다. 폐활성탄의 탈착시간 동안 발생되는 가스 성분의 총 열량은 316 kcal kg-1으로 나타났다. 폐활성탄을 이용하여 톨루엔으로 5회 반복 재생한 결과에서는 요오드가 및 비표면적이 신탄에 비하여 상대적으로 낮은 것으로 분석되었다. 원통형 카트리지 2개를 직렬로 연결한 탈착실험에서는 최대 THC농도가 약 470 ppm으로 나타났다.
In this study, the waste activated carbon used in the painting process was filled into a cylindrical cartridge and the characteristics of desorption by low temperature gas were investigated. Adsorption and desorption experiments of toluene with activated carbon were conducted to determine the flow rate of desorption. In an experiment where desorption was performed while changing conditions at flow rates of 1, 2 and 4 m3 min-1, it was determined that 2 m3 min-1 was appropriate due to the high THC concentration and desorption time. In the early stage of the desorption of waste activated carbon, 2-butanone and MIBK (methyl isobutyl ketone) with a low boiling point were generated at a high rate in the gas component, and after that, the concentration of THC decreased and the BTX was desorbed at a high rate. The total calorific value of the gas component generated during the desorption of waste activated carbon was 316 kcal kg-1. From repeating the regeneration of waste activated carbon with toluene five times, it was observed that the iodine value and the specific surface area were relatively lower than that of new activated carbon. In the desorption experiment where two cylindrical cartridges were connected in series, the maximum THC concentration was about 470 ppm.
  1. Kim SH, Seo DJ, Kim HJ, Park JH, Lee KW, Bae SJ, Song HM, J. Env. Sci. Intern., 29(5), 479 (2020)
  2. Yang SB, Yu MS, Woo KB, J. Env. Sci. Intern., 25(8), 1177 (2016)
  3. Chae JS, Jeon JM, Lee TJ, Jo YM, J. Odor Indoor Environ., 18(2), 156 (2019)
  4. Wang H, Lashaki JM, Fayaz M, Hashisho Z, Philips JH, Anderson JE, Nichols M, Environ. Sci. Technol., 46(15), 8341 (2012)
  5. Liu XT, Yu G, Han WY, J. Hazard. Mater., 147(3), 746 (2007)
  6. Verougstraete B, Martin-Calvo A, Perre SV, Baron G, Finsy V, Denayer JF, Chem. Eng. J., 383, 123075 (2020)
  7. Yoon SM, Kim JY, Park K, Yoon SK, Kil IS, Park HJ, Rhee YW, Clean Technol., 16(1), 33 (2010)
  8. Kim JY, Yoon SM, Park K, Yoon SK, Kil IS, Park HJ, Rhee YW, Korean Chem. Eng. Res., 48(6), 752 (2010)
  9. Kwon SC, Yoon SM, Kim JY, Choi JH, Kil IS, Han MH, Rhee YW, J. Odor Indoor Environ., 10(4), 175 (2011)