Korean Journal of Materials Research, Vol.31, No.3, 150-155, March, 2021
F 농도 조절을 통한 AZO 박막의 광학적 전기적 특성 향상
Improvement of Optical and Electrical Properties of AZO Thin Films by Controlling Fluorine Concentration
E-mail:
Zinc oxide (ZnO) based transparent conducting oxides (TCO) thin films, are used in many applications such as solar cells, flat panel displays, and LEDs due to their wide bandgap nature and excellent electrical properties. In the present work, fluorine and aluminium-doped ZnO targets are prepared and thin films are deposited on soda-lime glass substrate using a RF magnetron sputtering unit. The aluminium concentration is fixed at 2 wt%, and the fluorine concentration is adjusted between 0 to 2.0 wt% with five different concentrations, namely, Al2ZnO98(AZO), F0.5AZO97.5(FAZO1), F1AZO97(FAZO2), F1.5AZO96.5(FAZO3), and F2AZO96(FAZO4). Thin films are deposited with an RF power of 40 W and working pressure of 5 m Torr at 270 °C. The morphological analysis performed for the thin film reveals that surface roughness decreases in FAZO1 and FAZO2 samples when doped with a small amount of fluorine. Further, optical and electrical properties measured for FAZO1 sample show average optical transmissions of over 89 % in the visible region and 82.5 % in the infrared region, followed by low resistivity and sheet resistance of 3.59 × 10-4 Ωcm and 5.52 Ω/sq, respectively. In future, these thin films with excellent optoelectronic properties can be used for thin-film solar cell and other optoelectronics applications.
- Afre RA, Sharma N, Sharon M, Sharon M, Rev. Adv. Mater. Sci., 53, 79 (2018)
- Kerkache L, Layadi A, Mosser A, J. Alloy. Compd., 485, 46 (2009)
- Wang FH, Chang CL, Appl. Surf. Sci., 370, 83 (2016)
- Minami T, Semicond. Sci. Technol., 20, S35 (2005)
- Lu S, Sun Y, Ren K, Liu K, Wang Z, Qu S, Polymers, 10, 5 (2018)
- Challali F, Mendil D, Touam T, Chauveau T, Bockelee V, Sanchez AG, Chelouche A, Besland MP, Mater. Sci. Semicond. Process, 118, 105217 (2020)
- Ellmer K, Nat. Photonics, 6, 809 (2012)
- Kim I, Lee KS, Lee TS, Jeong JH, Cheong BK, Baik YJ, Kim WM, J. Appl. Phys., 100, 063701 (2006)
- Ma J, Zhang W, Lin J, Sun Y, Ma J, Xu H, Liu Y, Yang G, J. Alloy. Compd., 819, 153012 (2020)
- Kumar KDA, Valanarasu S, Kathalingam A, Ganesh V, Shkir M, Faify S, Appl. Phys. A-Mater. Sci. Process., 123, 801 (2017)
- Purica M, Budianu E, Rusu E, Danila M, Gavrila R, Thin Solid Films, 403-404, 485 (2002)
- Ryu YR, Zhu S, J. Appl. Phys., 88, 201 (2000)
- Krunks M, Mellikov E, Thin Solid Films, 270(1-2), 33 (1995)
- Ellmer K, J. Phys. D-Appl. Phys., 33, R17 (2000)
- Li Q, Zhu L, Li Y, Zhang X, Niu W, Guo Y, Ye Z, J. Alloy. Compd., 697, 156 (2017)
- Meng X, Zhang H, Zhang X, Zheng G, Xie X, Han B, Yang F, Pei H, Wang Y, Optik, 219, 165105 (2020)
- Lu JG, Fujita S, J. Appl. Phys., 101, 083705 (2007)
- Tauc J, Grigorovici R, Vancu A, Phys. Status Solidi, 15, 627 (1966)
- Tuan TTA, Kuo DH, Lin K, Li GZ, Thin Solid Films, 589, 182 (2015)
- Haacke G, J. Appl. Phys., 47, 4086 (1976)