Energy & Fuels, Vol.34, No.8, 10067-10077, 2020
Enhanced Proton Conductivity of a Zn(II)-Based MOF/Aquivion Composite Membrane for PEMFC Applications
The membrane electrode assembly (MEA) is considered as the center of the polymer electrolyte membrane fuel cell (PEMFC); a solid electrolyte membrane is an indispensable component of MEA. For membrane research and development, reducing ohmic resistance while improving mechanical stability is a challenge. Using short-side-chain (SSC) Aquivion perfluorosulfonic acid (PFSA) dispersion and considering the theory of coordination networks, the conductivity of the Aquivion polymer electrolyte membrane is improved by incorporating a highly proton-conductive and economical three-dimensional MOF {[(Me2NH2)(3)(SO4)](2)[Zn-2(ox)(3)]}(n). The proton conductivity of the 1 wt % MOF-1/Aquivion composite membrane was improved by 13% compared to that of the pristine Aquivion membrane, 2 times that of Nafion and 1.5 times that of the MOF-1/Nafion composite. The water uptake and the ion-exchange capacity values are measured to analyze the fundamental properties of the membranes, and physical characterization techniques are also used.