화학공학소재연구정보센터
Inorganic Chemistry, Vol.60, No.3, 2009-2022, 2021
Half-Sandwich Ruthenium Complexes of Amide-Phosphine Based Ligands: H-Bonding Cavity Assisted Binding and Reduction of Nitro-substrates
We present synthesis and characterization of two half-sandwich Ru(II) complexes supported with amide-phosphine based ligands. These complexes presented a pyridine-2,6-dicarboxamide based pincer cavity, decorated with hydrogen bonds, that participated in the binding of nitro-substrates closer to the Ru(II) centers, which is further supported with binding and docking studies. These ruthenium complexes functioned as the noteworthy catalysts for the borohydride mediated reduction of assorted nitro-substrates. Mechanistic studies not only confirmed the intermediacy of [Ru-H] in the reduction but also asserted the involvement of several organic intermediates during the course of the catalysis. A similar Ru(II) complex that lacked pyridine-2,6-dicarboxamide based pincer cavity substantiated its unique role both in the substrate binding and the subsequent catalysis.