Inorganic Chemistry, Vol.59, No.17, 11925-11929, 2020
A Rare 3D Porous Inorganic-Organic Hybrid Polyoxometalate Framework Based on a Cubic Polyoxoniobate-Cupric-Complex Cage with a High Water Vapor Adsorption Capacity
A rare 3D porous inorganic-organic polyoxoniobate framework based on the cubic polyoxoniobate-cupric-complex cage {[Cu(en)(2)]@{[Cu-2(en)(2)(trz)(2)](6)(Nb68O188)}} (1a), has been successfully synthesized by a hydrothermal method. The cubic cages 1a are connected with 4-(tetrazol-5-yl)pyridine to form a 1D pillar-like chain structure, and every 1D pillar-like chain is further linked with four adjacent pillar-like chains by the [Cu(en)(2)](2+) complex to form a 3D porous inorganic-organic polyoxoniobate framework with 4-connected CdSO4-type topology. To our knowledge, it is the first time that three different types of organic ligands are simultaneously introduced into one polyoxoniobate. This material also exhibits a high vapor adsorption capacity and good ionic conductivity properties.