화학공학소재연구정보센터
Inorganic Chemistry, Vol.59, No.15, 10688-10698, 2020
PtSn Nanoalloy Thin Films as Anode Catalysts in Methanol Fuel Cells
Reactions of SnX2 (X = Cl, Br) with [PtMe2(bipy)], 1, (bipy = 2,2'-bipyridine), followed by NaBH4 reduction at the toluene/water interface in the presence or absence of graphene oxide support rendered PtSn nanoalloy thin films. They were characterized by powder X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. The electrocatalytical activity of the PtSn thin films was investigated in the methanol oxidation reaction. Our studies showed that the PtSn/reduced-graphene oxide (RGO) thin film gave better catalytic results for MOR in comparison to bare PtSn or Pt thin films. A maximum j(f)/j(b) ratio (j(f) and j(b) are the maximum current densities in the forward and backward scans, respectively) of 6.77 was obtained for the PtSn/RGO thin film deriving from the 1 + SnBr2 + NaBH4 sequence.