화학공학소재연구정보센터
Journal of Catalysis, Vol.392, 322-335, 2020
Nature of active Fe species and reaction mechanism over high-efficiency Fe/CHA catalysts in catalytic decomposition of N2O
Fe/CHA catalysts for N2O decomposition with various Fe loadings (Fe/SAPO-34 and Fe/SSZ-13) were synthesized by a solid-state ion exchange method. Under the same reaction conditions, obviously superior activities of Fe/CHA catalysts were observed in comparison with the current state-of-the-art Fe/zeolite, i.e., Fe/FER. Meanwhile, Fe/CHA catalysts exhibited a robust high-temperature hydrothermal stability. The characterization results and density functional theory (DFT) calculations indicated that the dispersion of Fe species over Fe/CHA catalysts was strongly influenced by the nature of the support, although SAPO-34 and SSZ-13 have similar morphology. Combined with the catalytic performance, dinuclear [HO- Fe-O-Fe-OH](2+) species were identified as the most active Fe species for Fe/CHA catalysts in the N2O decomposition reaction. Furthermore, the dimeric Fe species in SSZ-13 were more active than those in SAPO-34, due to lower Fe-O binding energies. Finally, DFT calculations provided a comprehensive understanding of the N2O decomposition mechanism over Fe/CHA catalysts. (C) 2020 Elsevier Inc. All rights reserved.