화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.588, 602-610, 2021
Large amplitude oscillatory rheology of silica and cellulose nanocrystals filled natural rubber compounds
Nanoparticles reinforce rubbers and enhance Payne effect for the compounds experiencing large amplitude oscillatory shear deformation. Herein the effects of silica and cellulose nanocrystals on the Payne effect of natural rubber compounds are investigated by stress decomposition methods for clarifying the elastic and viscous nonlinearities varying with filler content and composition. The Payne effect is in general characterized by intercycle strain softening and shear thinning behaviors and intracycle hardening and thinning behaviors at high strain (strain rate) amplitudes while the filler influences the behaviors markedly at intermediate strain (rate) amplitudes. Especially, the addition of cellulose nanocrystals in the silica filled compounds improves the elastic nonlinearity and greatly weakens the viscous nonlinearity, providing a perspective on understanding the Payne effect for manufacturing high-performance rubber materials. (C) 2020 Elsevier Inc. All rights reserved.