화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.125, No.3, 857-866, 2021
Photoelectron Spectra of Gd2O2- and Nonmonotonic Photon- Energy-Dependent Variations in Populations of Close-Lying Neutral States
Photoelectron spectra of Gd2O2- obtained with photon energies ranging from 2.033 to 3.495 eV exhibit numerous close-lying neutral states with photon-energy-dependent relative intensities. Transitions to these states, which fall within the electron binding energy window of 0.9 and 1.6 eV, are attributed to one-or two-electron transitions to the ground and low-lying excited neutral states. An additional, similar manifold of electronic states is observed in an electron binding energy window of 2.1-2.8 eV, which cannot be assigned to any simple one-electron transitions. This study expands on previous work on the Sm2O- triatomic, which has a more complex electronic structure because of the 4f(6) subshell occupancy of each Sm center. Because of the simpler electronic structure from the half-filled 4f(7) subshell occupancy in Gd2O2 and Gd2O2-, the numerous close-lying transitions observed in the spectra are better resolved, allowing a more detailed view of the changes in relative intensities of individual transitions with photon energy. With supporting calculations on numerous possible close-lying electronic states, we suggest a potential description of the strong photoelectron-valence electron interactions that may result in the photon-energy-dependent changes in the observed spectra.