Journal of Physical Chemistry A, Vol.124, No.51, 10890-10896, 2020
Effect of Ammonia on Methane Hydrate Stability under High-Pressure and High-Temperature Conditions
High-pressure experiments were conducted to investigate the stability and phase transition of methane hydrate (MH) in the water-methane-ammonia system at room-to-high temperatures employing Raman spectroscopy and synchrotron X-ray powder diffraction, in combination with an externally heated diamond anvil cell. The results revealed that, at room temperature, MH undergoes phase transitions from MH-I to MH-II at similar to 1.0 GPa and from MH-II to MH-III at similar to 2.0 GPa. These transition behaviors are consistent with those in the water-methane system, which indicates that ammonia has a negligible effect on a series of phase transitions of MH. Contrarily, a sequential in situ Raman spectroscopy revealed that ammonia affects the stability of MH-III under high pressure and high temperature: the dissociation temperature of MH-III was more than 10 K lower in the water-methane-ammonia system than in the water-methane system. These findings aid in improving the internal structural models of icy bodies and estimating the origin of their atmospheric methane.