Journal of Physical Chemistry B, Vol.125, No.10, 2729-2740, 2021
Designing Highly Conductive Block Copolymer-Based Anion Exchange Membranes by Mesoscale Simulations
Hydroxide ion conductivity is a key aspect of anion exchange membranes and is mainly determined by the nanoscale membrane morphologies. Fundamental understanding of the structural and transport properties of membranes in terms of polymer architectures is crucial for future development of membrane-based applications. Using mesoscale simulations, this work predicts the mesostructure of the hydrated triblock copolymers; the designed polymers are composed of aromatic (polyphenylene oxide, PPO) or aliphatic (polystyrene-ethylene-butylene-styrene, SEBS) backbones, with cationic side chains being modified by hydrophobic or hydrophilic spacers. For PPO-based polymers, using octyl spacers creates a meshlike water network, yielding ion conductivity equal to 30.6 mS/cm at room temperature. For SEBS-based polymers, the nonmodified form is sufficient to produce ion-conducting pathways. Adding hydrophobic spacers further enhances the nanosegregation, and the membranes provide similar conductivity at a lower ion exchange capacity and water content. Adding hydrophilic spacers, however, has negative impacts on the ion transport. The side chains are in the stretched configurations, which sterically hinder the mobility of water and hydroxide ions. Such a resistance can be overcome by adapting multication side-chain designs, where large water channels are formed, yielding ion conductivity as high as 32.8 mS/cm.